Advanced Inverter Functions for Distributed Solar Integration

- 1. DOE Sunshot and state-wide incentives for distributed solar.
- 2. Managing voltage fluctuations with smart inverters
- 3. The need for PV to provide ride-through and grid support
- 4. Evolution of IEEE Standard 1547
- 5. On-going research into PV inverter functions and models

Tom McDermott, tem42@pitt.edu

Pittsburgh IEEE PELS Chapter February 23, 2016

Net metering tiers can distort the interconnection; a 3 MW generator becomes three 1-MW generators.

Source: Neil LaBrake, Jr., National Grid

2/23/2016

Pgh PELS: Advanced Inverter Functions

There are three main concerns with integrating VG on distribution systems.

- 1. Voltage Fluctuations
 - a) Inverters can operate at fixed power factor
- 2. Fault Currents and Overvoltages
 - a) Inverters contribute only 1.1 2.0 times rated
 - b) Inverters shut down quickly upon open-circuit or short-circuit conditions
- 3. Unintended Islanding
 - a) Utility-interactive inverters have built-in antiislanding detection schemes to operate in 2 s

2/23/2016

Pgh PELS: Advanced Inverter Functions

7

Sandia, NREL and EPRI have promoted updates to the 15% screening criteria for no-study PV interconnects.

Optimal (fixed) power factor dispatch alleviates voltage fluctuations, until vendors implement IEEE 1547a

Estimated % Voltage Change:

$$\begin{split} V_{drop} &= \frac{100}{U_n^2} (R_1 + jX_1) (P_n - jQ_n) \\ &\frac{dV}{U_n} &= \sqrt{(100 - \text{Re} V_{drop})^2 + (\text{Im} V_{drop})^2} - 100 \end{split}$$

(R, X in ohms, S_n in MVA, U_n in kV)

2/23/2016 Pgh PELS: Advanced Inverter Functions

Full On-Off Voltage Change vs. Power Factor - 0.000 - 0.500 - 1.000 - 1.500 - 2.000 - 2.500 - 2.000 - 2.500 - 3.000 - 4.500 - 4.500 - 6.000 - 6.500 - 7.000 - 8.500 - 7.000 - 9.550 - 9.000 - 9.000 -

9

10

Basic Distribution Software Tasks have been limited to load flow and short circuit analyses.

Current Flow and Voltage Drop

• Overcurrent Protective Device Coordination

Pgh PELS: Advanced Inverter Functions

Quasi-static Time Series (QSTS) Simulation addresses load and generation variability. Time-stepping through a variable power profile Tap changers are active, with time delays Capacitor controls with time delays Controls remember state at next time But it's not a dynamic simulation: No inertia No numerical integration Simple RMS load flow solution at each time step Daily Load Variations) 40-minute Wind Conventional Generator Daily PV (50 kW Unit) 2/23/2016 Pgh PELS: Advanced Inverter Functions 11

"Percent available" output means the physical slope [VARs/volt] varies.

Would you choose to make this gain block non-linear or time-varying?

<u>What was the intent?</u> "Available VARs'" implies whatever the DER is capable of providing at the moment, without compromising Watt output. In other words, <u>Watt output takes precedence over VARs</u> in the context of this function".

Source: "Common Functions for Smart Inverters, v3", EPRI 3002002233, February 2014, p. 9-3.

2/23/2016

Pgh PELS: Advanced Inverter Functions

13

Dynamic Reactive Current function provides an eventbased response to changes in voltage.

Source: "Common Functions for Smart Inverters, v3", EPRI 3002002233, February 2014

Tested with a three-phase high-impedance fault in EPRI 3002002271

2/23/2016

Pgh PELS: Advanced Inverter Functions

Dynamic Reactive Current function provides reactive power in percent of rating.

Source: "Common Functions for Smart Inverters, v3", EPRI 3002002233, February 2014

2/23/2016 Pgh PELS: Advanced Inverter Functions

Dynamic Reactive Current function uses a <u>moving</u> average to define the voltage set-point.

Source: "Common Functions for Smart Inverters, v3", EPRI 3002002233, February 2014

2/23/2016 Pgh PELS: Advanced Inverter Functions

16

A Frequency-Watt function can help dampen system frequency swings.

- *P* is the real power output [pu]
- P_{pre} is the pre-disturbance real power output [pu]
- f is the disturbed system frequency [Hz]
- *db* is a single-sided deadband (default to 0.1 Hz)
- k is the per-unit frequency change corresponding to 1 per-unit power output change (defaults to 0.05)

$$P = P_{pre} - \frac{f - (60 + db)}{60k}$$

2/23/2016

Pgh PELS: Advanced Inverter Functions

29

Conclusion – Adaptive Voltage Regulation should be the default behavior of PV inverters.

- The default settings work well (so far...):
 - Slope = 30
 - Tau = 1200 s
 - $-0.95 \le Vreg \le 1.05 [pu]$
- Without smart-grid communications
 - No need for detailed coordination studies
 - No wake-up time for inverter's voltage response
- With smart-grid communications
 - Fail-safe behavior
 - Dispatch reactive power, just like shunt capacitors
- Default high-frequency roll-off as well

2/23/2016

Pgh PELS: Advanced Inverter Functions

IEEE 1547a-2014 allows voltage regulation and requires more adjustability in voltage and frequency trip settings.

Table 2—Interconnection system default response to abnormal frequencies

Function	Default settings		Ranges of adjustability	
	Frequency (Hz)	Clearing time (s)	Frequency (Hz)	Clearing time (s) adjustable up to and including
UF1	57	0.16	56-60	10
UF2	59.5	2	56 - 60	300
OF1	60.5	2	60 - 64	300
OF2	62	0.16	60 - 64	10

As mutually agreed upon by the Area EPS and DR operators, DR shall be permitted to provide modulated power output as a function of frequency in coordination with functions UF1, UF2, OF1, and OF2. Operating parameters shall be specified when this function is provided.

Table 1 Default Interconnection system default response to abnormal voltages

Default setti	ngs	Clearing time: adjustable up to and including (s)	
Voltage range (% of base voltage ^b)	Clearing time (s)		
V < 45	0.16	0.16	
45 < V < 60	1	11	
60 < V < 88	2	21	
110 < V < 120	1	13	
V > 120	0.16	0.16	
and clearing time trip settin	gs shall be permitted	d DR operators, other static or dynamic voltage d stated in ANSI C84.1-20 06 11, Table 1.	

2/23/2016

Pgh PELS: Advanced Inverter Functions

33

After more than 10 years, IEEE 1547 is in a full revision process to more fully address the issues.

NOTES

- 1-Switch S1 may be replaced with individual switches on each of the RLC load components.
- 2—Unless the EUT has a unity output p.f., the reactive power component of the EUT is considered to be a part of the islanding load circuit in the figure.

Figure 2—Unintentional islanding test configuration

2/23/2016

Pgh PELS: Advanced Inverter Functions

