10 Deadly Sins of Software Estimation

Steve McConnell

© 2002 Construx Software Builders, Inc.
All Rights Reserved.
www.construx.com

Background

- Estimation Book
- Construx Estimate™
- Construx’s Training
- Construx’s Consulting

www.construx.com
Art and Science of Software Estimation

- *Science* of estimation is well-developed and well-supported by software tools
- *Art* of estimation relies on rules of thumb and still needs some work

Almost-Deadly Sins of Software Estimation
Sins #20-#11
Sin #20

Estimating how long “it” will take to build before anyone knows what “it” is

Sin #19

Assuming that the most reliable estimates come from the people with the most powerful vocal chords
Sin #18

Telling someone you’re writing an estimation book, because they will say, “When do you estimate you’ll be done, ha ha ha.”

Sin #17

Creating an estimate for a new project by comparing it to a past project … … which overran its estimates… … and ultimately realizing that you based the new project’s plans on the past project’s estimated results instead of its actual results
Sin #16

Assuming that the sales department is better at estimating software projects than the programmers are.

Sin #15

Creating estimates that assume that no one will go to training ...
- or attend meetings …
- or be called to work on another project …
- or need to support a key customer …
- or take a vacation …
- or get sick …
- etc …
Sin #14

Presenting estimates with a high degree of precision (“67.4 days”) that are supported by only a low degree of accuracy (“±2 months”)

Sin #13

Believing that software estimation tools can’t possibly match the computing power of a pencil and a beer-stained napkin
Sin #12

Reasoning that, “The sooner we fall behind schedule, the more time we’ll have to catch up.”

Sin #11

Arguing that the software developers are padding their estimates just so they can look good … … when the last time anyone delivered a software project early was during the Nixon administration!
Deadly Sins

Sin #1 Confusing Targets with Estimates
Confusing Estimates with Targets

- The software industry does lots of target setting
- These targets are not created through any kind of analysis based on the work to be performed
- In practice, little real estimation is done

Differentiate Between Targets and Estimates

- Target setting is a key part of the art of estimation
- When you’re asked to provide an estimate, determine whether you’re really supposed to be estimating or figuring out how to meet a target
- This is best treated as an iterative process that brings estimates and targets into alignment
Sin #2
Saying “Yes” When You Really Mean “No”

Why Developers Say “Yes”

It is very difficult to make a vigorous, plausible, and job-risking defense of an estimate that is derived by no quantitative method, supported by little data, and certified chiefly by the hunches of the managers.

— Fred Brooks (1975)
Schedule Negotiations

- Software developers tend to be introverts and relatively young
- Marketing and sales personnel tend to be more extroverted and organizationally senior to the developers they negotiate with

Sin #3
Committing to Estimates Too Early in the Cone of Uncertainty
The Cone of Uncertainty

Most estimates are created here.

Good estimates aren’t possible until here.

Plan to Revise Estimates Throughout the Project

Suitable only as estimates.

Suitable as estimates and commitments.
Sin #4
Assuming Underestimation has No Impact on Project Results

Effect of Estimation Accuracy

- **Non-linear impact due to** planning errors, upstream defects, high-risk practices
- **Linear impact due to Parkinson's Law**

<table>
<thead>
<tr>
<th>Cost</th>
<th>Effort</th>
<th>Schedule</th>
</tr>
</thead>
<tbody>
<tr>
<td><100%</td>
<td>100%</td>
<td>>100%</td>
</tr>
</tbody>
</table>

Target as a Percentage of Nominal Estimate
Sin #5
Estimating in the “Impossible Zone”

Puzzle

- Suppose you drive 30 mph up a hill 1 mile.
- How fast do you need to drive down the hill to average 60 mph for the entire trip?
Variation on Sin #5

[The common definition of estimate is] ‘An estimate is the most optimistic prediction that has a non-zero probability of coming true’ . . .

Accepting this definition leads irrevocably toward a method called what’s-the-earliest-date-by-which-you-can’t-prove-you-won’t-be-finished estimating.

— Tom DeMarco (1982)

Estimates Are Probability Statements

- What happens when you take a nominal estimate and compress it?
- There is no such thing as a “single-point estimate” that is correct/meaningful
- All estimates include at least implied probabilities (even if the estimator doesn’t know it)
Schedule Compression and the Impossible Zone

The "Impossible Zone"

Relative Schedule \(\frac{T_{\text{desired}}}{T_{\text{norm}}} \)

Effort/Schedule Tradeoff

- *All* researchers have found some tradeoff between schedule compression and effort
- *No one* thinks there's no tradeoff
- Assume a maximum possible schedule compression of about 25%

Don’t Create Estimates in the “Impossible Zone”

- What’s the solution to the puzzle?

- Drive 30 mph up the hill

Sin #6

Overestimating Savings from New Tools or Methods
Savings from New Tools or Methods

Problems:
- Must pay learning curve price during first use
- Maximum effectiveness doesn’t appear during first use
- First use tends to be error prone
- Early claims for effectiveness are often based on expert use—sometimes by programmers or authors who invented the tool or method!
- Payoff is less than expected when it does appear
- New tools and methods increase risk

Best assumption is productivity loss from initial use of new tool or method

Sin #7
Using Only One Estimation Technique
Example of One Technique vs. Multiple Techniques

Code Complete Length Estimate

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Original Whole-Book Estimate</th>
<th>Expert Judgment Estimate</th>
<th>Calc'd from Points in Outline</th>
</tr>
</thead>
<tbody>
<tr>
<td>Preface</td>
<td>-</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>Welcome</td>
<td>-</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>How to Read</td>
<td>-</td>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td>Metaphors</td>
<td>-</td>
<td>11</td>
<td>11</td>
</tr>
<tr>
<td>Prerequisites</td>
<td>-</td>
<td>52</td>
<td>52</td>
</tr>
<tr>
<td>Typical Steps</td>
<td>-</td>
<td>27</td>
<td>36</td>
</tr>
<tr>
<td><snip></td>
<td>-</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>Tuning</td>
<td>-</td>
<td>55</td>
<td>41</td>
</tr>
<tr>
<td>Management</td>
<td>-</td>
<td>30</td>
<td>31</td>
</tr>
<tr>
<td>Character</td>
<td>-</td>
<td>20</td>
<td>23</td>
</tr>
<tr>
<td>Review of Themes</td>
<td>-</td>
<td>20</td>
<td>21</td>
</tr>
<tr>
<td>TOTAL</td>
<td>250</td>
<td>794</td>
<td>751</td>
</tr>
</tbody>
</table>

Use Multiple Techniques

- Difficult to be confident in estimates created using only one method--contributes to Brooks’ “vigorous defense” problem
- Leading organizations use multiple techniques
- Create estimates different ways and look for convergence or spread among the estimates
Sin #8
Not Using Estimation Software
Use Estimation Software

- Best support for *science* of estimation is tools
- Estimates created with tools can have more credibility than estimates created by manual methods
- Construx Estimate--Free Download: www.construx.com/estimate/

Sin #9
Not Including Risk Impacts in Estimates
How Much Risk Gets Included in the Project Plan?

<table>
<thead>
<tr>
<th>Risk</th>
<th>Probability</th>
<th>Impact</th>
<th>Exposure (RE)</th>
</tr>
</thead>
<tbody>
<tr>
<td>New technology doesn’t live up to expectations</td>
<td>25%</td>
<td>8 weeks</td>
<td>2.0 weeks</td>
</tr>
<tr>
<td>New technology requires staff training</td>
<td>50%</td>
<td>1 week</td>
<td>0.5 weeks</td>
</tr>
<tr>
<td>Demo version of software is required to support trade show</td>
<td>75%</td>
<td>2 weeks</td>
<td>1.5 weeks</td>
</tr>
<tr>
<td>Senior staff not available as planned</td>
<td>25%</td>
<td>10 weeks</td>
<td>2.5 weeks</td>
</tr>
<tr>
<td>Government regulations change before software ships</td>
<td>10%</td>
<td>2 weeks</td>
<td>0.2 weeks</td>
</tr>
<tr>
<td>Total</td>
<td>-</td>
<td>23 weeks</td>
<td>6.7 weeks</td>
</tr>
</tbody>
</table>

Addressing Risk in Estimates

- Software projects are inherently risky
- The total Risk Exposure (RE) is the expected value of the project overrun
- The RE is where “buffer planning” starts
Sin #10
Providing Off-The-Cuff Estimates

Treat Estimation as a Mini-Project

- Use of guessing and intuition to create estimates is correlated with cost and schedule overruns (at the 0.05 level of significance)
- Use of simple arithmetic formulas is negatively correlated with overruns (at the 0.01 level of significance)
Define a Standardized Estimation Procedure

Elements of a standardized procedure:
- A clear description of an estimate’s imprecision
- Use of multiple estimation approaches
- A plan to re-estimate at pre-defined points in the project
- Definition of when “estimates” become “commitments”

Decompose Big Estimates Into Smaller Estimates

- Decompose systems into modules
- Decompose big tasks into small tasks
- Makes use of a statistical property called “the law of large numbers”—highs and lows tend to cancel each other out
Conclusions

- Bad estimates (or targets) are the norm
- Good estimates are possible!
- Deadly sins and rules of thumb presented here are just the tip of the iceberg

Summary of 10 Deadly Sins

- Confusing targets with estimates
- Saying “yes” when you really mean “no”
- Committing to estimates too early in the cone of uncertainty
- Assuming underestimation has no impact on project results
- Estimating in the “impossible zone”
- Overestimating savings from new tools or methods
- Using only one estimation technique
- Not using estimation software
- Not including risk impacts in estimates
- Providing off-the-cuff estimates
Construx
Delivering Software Project Success

Services
- Software Projects
- Consulting
- Seminars

Software Resources
- info@construx.com
- www.construx.com

In-Depth Estimation Workshop:
www.construx.com/seminars/