FPGA Timeline & Applications
FPGAs past, present & future

Jim Brakefield
FPGA Application Areas

$6-7B$ yearly sales

- Communications
- DSP
- Software-defined radio
- Aerospace and defense systems
- ASIC prototyping
- Medical imaging
- Computer vision
- Speech recognition
- Cryptography
- Bioinformatics
- Computer hardware emulation
- Data Center: AI, NN, big data

Advantages:
- Low NRE
- Low volume products
- Updates/patches
- Parallelism
- Portable code (RTL)
- Soft dev || Hard dev
- Early use of process nodes

Disadvantages:
- ASICs are cheaper, faster and lower power in high volumes
Low End Applications

• Glue logic
 Connection of disparate devices to a uP
 Last minute patches

• Logic funnel
 Legacy design re-hosting
 IP: pre-packaged modules
 Soft core processors & peripherals
 (www.opencores.org)

1.5-3mm pkg, 2K LUTs
.1Mb block RAM

20K LUTs, 40 DSPs,
1Mb block RAM
Mid-scale Applications

200K LUTs, 1K DSPs, 15Mb block RAM

• Communications: Internet routers, Telephone switches, Protocol conversion
• Signal Processing: Software defined radio, Camera, Audio, Video, Radar ...
• Test & Measurement: high speed A2D & D2A,
• Big science: Super-collider, SETI, etc.
• Aerospace: radiation hardened, military temperature range
• SOC (System On a Chip): driverless vehicles
High End Applications

2.5M LUTs, 5K DSPs, 200Mb block RAM

• ASIC (Applications Specific Integrated Circuit) emulation
• High end weapons, who knows what else?
• Super-computing coprocessor
 Intel bought Altera
• Wall street (high frequency trading)
• AI/deep NN/data center acceleration
The Vendors

- **Xilinx**: www.xilinx.com
 - Originated FPGAs, tried anti-fuse, flash & CPLD, now #1
- **Altera (now Intel)**: www.altera.com
 - Originally CPLDs, currently #2 in FPGAs.
- **Microsemi (was Actel)**: www.actel.com
 - Originally anti-fuse, then flash, now SRAM & flash based
- **Lattice Semiconductor**: www.latticesemi.com
 - Offer tiny FPGA chips, diversifying away from FPGAs
- **uP with some programmable logic**
 - Cypress (under PSoC): ARM + programmable IO
 - Atmel/Microchip: ibid.
The FPGA

Generic FPGA diagram
Green: IOs
Squares: LUT groups/slices/blocks
Octagons: Wiring interconnections
Lines: Wire segment bundles

From: Trimberger, 2015 Proc IEEE v103 #03 pg320
FPGA timeline

Not far off:
1GHz performance
7nm silicon
On chip DRAM

From: Trimberger, 2015 Proc IEEE v103 #03 pg318
Basic LUT (Look-Up Table)

Currently up to 2.5M LUTs at 100-1000 LUTs/$

- 1985 LUTs plus DFF Xilinx XC2000
 - Clocking facilities
 - Configuration memory
 - Routing wires

- 1991 Carry chain Xilinx XC4000
 - LUT RAM (16x1)
 - Shift Registers
LUT + DFF

3LUTs tried
6LUTs in use
ALM: ~two
5LUTs
with
multiple
configurations

4LUT: 16 bits
of memory &
a 16:1 MUX
Uses:

“glue” logic
Reprogrammable (field changes)
Reliability (parts count and wiring reduction)

IPo1553 module (BAE Systems): ARINC 429, MIL-STD 1553, RJ45, CAN
Block RAM

• 1995 Dual port RAM Altera FLEX
• Variable aspect ratio (on each port)
 16Kx1, 8Kx2, 4Kx4, 2Kx8/9, 1Kx16/18, 512x32/36
• A variety of RAM capacities
 LUT RAM (16x1), small block RAM (~32x18), block RAM (~512x36), large block RAM (~4Kx72)
• Uses:
 Buffers, FIFOs, shift registers, scratch pad memory, DSP coefficients, two single port RAMs, u-code

up to ~12K block RAMs
up to 480M bits
Block RAM

Data in
Parity data in
Address in
Write enable
Enable
Reset
Clock

Data in
Parity data in
Address in
Write enable
Enable
Reset
Clock

Parity bits usable as data bits

Data out
Parity data out
Data out
Parity data out

Xilinx Spartan-6 FPGA Block RAM Resources User Guide pg12
PLL (Phase Locked Loop)

- 1996 Altera FLEX 10K
- FPGAs can have dozens of distinct clocks
- All the analog (of the PLL) inside FPGA
- Uses: Reduce chip count, precise clock phase control
“ASIC” IO

- 1998 Universal IO Xilinx Virtex
- 1.2, 1.8, 2.5, 3.3, 5.0 VDC
 each bank of IO pins has its own power supply
- LVTTL, CMOS, HSTL, SSTL, PECL, LVDM ...
 (via constraint file)
- 4, 8, 12, 16, 24ma, pullup/pulldown (ibid)
- resistive termination, slow/fast edges (ibid)
- Uses:
 general purpose IO, DRAM hookup, PWM, logic analyzer, etc.
“ASIC” IO

Global input buffers used for clocks and reset

Up to 1680 IOs/chip

To Device Pin
Multiply/accumulator

- 2000 18x18 signed Xilinx Virtex-2
- 2002 DSP block Altera Stratix
- Initially no accumulator, accumulators now include ALU capability and floating-point
- Use pipelining for maximum speed
- Multiplier shapes: 16x16, 18x18, 18x27; (3)9x9, (2)18x18 or (1)27x27
- Uses: DSP, FFT, ALU

up to ~12K per chip running at 800MHz
Simplified DSP slice

Xilinx Spartan-6 FPGA DSP48A1 Slice pg 17
SERDES (Serialize/De-serialize)

up to ~100 per chip
up to 56Gbps

• 2001 Source synchronous transceiver
 Xilinx Virtex-II

• 2002 SERDES Transceiver
 Xilinx Virtex-II Pro

• Uses:
 Communication links: Fiber connections, Ethernet, PCI-express, Interlaken, etc
ASIC micro-processor(s)

1 to 6 per chip, 100MHz to 1.5GHz

- 2000 ARM 9 Altera Excalibur
- 2002 PowerPC Xilinx Virtex-II Pro
- 2010 ARM Cortex M3 Actel Smart Fusion
- 2010 ARM dual Cortex A9
 Xilinx Zynq, Altera Cyclone V
- 2015 ARM quad A53 & dual R5, GPU
 Xilinx Zynq Ultrascale+, Altera Arria-10
- 2019 ACAP Xilinx datacenter compute chip
- 2019 ? Intel/Altera ?

- All have microprocessor peripherals
- Uses: Reduce chip count, cleaner interface between uP and FPGA fabric
SOC chip

Virtex-4: A “Platform FPGA”

200,000 Flexible Logic Cells

500 MHz Digital Clock Management

500 MHz, 10Mbits BRAM with FIFO & ECC

0.6-11.1 Gbps Serial Transceivers

500 MHz, 10Mbits BRAM with FIFO & ECC

1 Gbps Source Synchronous I/O

450 MHz PowerPC® Processor with Auxiliary Processing Unit
10/100/1000 Ethernet MAC

500 MHz Programmable DSP Execution Units

From: Trimberger, 2015 Proc IEEE v103 #03 pg327
Silicon interposer (3D silicon)

- 2009 Multi-chip FPGA Xilinx Virtex-6

Uses: Yield improvement, reduced wiring capacitance, augmentation with SERDES, DRAM & A2D/D2A chips

Xilinx white paper #380 pg 4 & 7, 2012: Stacked Silicon Interconnect Technology
HLS (High Level Synthesis)

“Work in Progress”

• 1980s VHDL & Verilog RTL
 (Register Transfer Language)

• 2004 C, C++ or SystemC to VHDL/Verilog
 Matlab to VHDL/Verilog

• 2011 Xilinx bought AutoESL, incorporated HLS technology into their Vivado tool.

• 2011 OpenCL for uP, DSP, GPU & FPGAs

• Uses: Productivity
 FPGA development by software engineers
Floating-point

• 2015 32-bit Add/subtract/multiply
 Altera Arria-10 & Stratix-10

• IEEE floating-point library: exponent & mantissa size bit adjustable

• Uses:
 Super computer applications
 Wide dynamic range DSP
2019 High End Processing

- High performance PC: x86, 64-bit ARM, etc
- DSP: the niche is evaporating/morphing
- ASICs: high NRE
- GPGPU (General Purpose Graphics Proc. Unit)
 - Originally for gaming, now used for AI apps
- FPGAs (Field Programmable Gate Arrays)
 - As chip capacity increases, capabilities escalate
2019 Xilinx ACAP: Adaptive Compute Acceleration Platform

- https://www.eejournal.com/article/xilinx-previews-next-generation/
- HW/SW programmable engines
 - Probably enhanced DSP modules
 https://www.youtube.com/watch?v=XMeKwtp82M8
- Application and Real-Time Processors
 - Probably ARM or RISC-V uP
- On-die network fabric
 - See Jan Gray’s http://fpga.org/grvi-phalanx/
2019 Intel/Altera:

• Singularity Prosperity series of videos:
 https://singularityprosperity.com/videos
 The Future of Classical Computing (Heterogeneous Architecture – CPUs, GPUs, FPGAs, ASICs,...):
 https://www.youtube.com/watch?v=2yklU69Xiuo
 The GPGPU (nVidia) argument:
 https://www.youtube.com/watch?v=658n_Ym8dkk

• Intel has many irons in the fire, along with Microsoft, Google, ...
 https://www.nextplatform.com/2018/05/24/a-peek-inside-that-intel-xeon-fpga-hybrid-chip/
References

• *Three Ages of FPGAs: A Retrospective...,* Steve Trimberger, Proc. IEEE v103#3p318, 2015

 www.cpe.virginia.edu/grads/pdfs/January%202016/VLSI.pdf

• *Xilinx Part Family History*, John Lazzaro,

 www-inst.eecs.berkeley.edu/~cs294-59/fa10/resources/Xilinx-history/Xilinx-history.html

• *Altera History*, corporate,

 www.altera.com/about/company/history.html

• HLS (High Level Synthesis)

 en.wikipedia.org/wiki/High-level_synthesis
High End Applications

Typical FPGA & uP module

SRC Saturn 1 Server

64GB SDRAM (Two Banks)

Intel Microprocessor

Multiple GigE Ports

42 Saturn 1 Servers per 4U chassis ~2,000 watts

9 chassis per rack ~20,000 watts
High End Applications

ALDEC HES-7 Board using (6) Virtex-7 2000 with 1.1M LUTs each
Used to simulate 600M ASIC gates
Actel SmartFusion2 KickStart Kit

Avnet
AES-SF2-KSB-G
$59.95
Has ARM Cortex M3
Xilinx Zynq SOC kit

Snickerdoodle with WiFi & Bluetooth $72
Altera Cyclone V SOC kit

Terasic DE-0 Nano SoC $99
Cypress PSoC5 kit

CY8CKIT-059 for $10 with: ARM Cortex M3, Analog & Digital IO
IP (Intellectual Property)

Pre-packaged modules, macros & generators

- TTL logic equivalents (with schematic entry)
- Simple macros (also with schematic entry)
- Vendor free IP: soft-core processors, CORDIC, FFT, Floating-point, PCI-express, memory controllers ...
- Open source IP: www.opencores.org
- Vendor and 3rd party non-free IP (various interfaces, soft core processors, image processing...)
- Uses: save time & money
Xilinx CORDIC GUI

Ray Andraka 1998: A survey of CORDIC algorithms for FPGA based computers
Intro: Experience

- PowerPC emulation of Pentium
 - Decided to learn VHDL 1995
- AMD/Vantis/Lattice Semi
 - Competitive benchmarking 1998-2002
- OnBoard Software/BAE Systems 2004-2012
 - FLR-9, IP over 1553, Weather RADAR
- ROIS24_24uP
 - 24-bit soft core processor 2016
FPGA Code & Test Process

• Schematic capture (doesn’t scale)
• Or write RTL (Register Transfer Logic) which evolved into Verilog and VHDL (1980s)
• Simulate
 – Faster than compile/map-pack-P&R-bit-stream/download
 – Use test-bench
 – Not perfect
• Compile: synthesize VHDL/Verilog to gates or FPGA primitives
• Map, Pack, timing driven Place & Route
• Bit-stream generation
• Download & test