Signal Integrity Design
versus
Radiated Emission Control

Dr. Cheung-Wei Lam
IEEE EMC Distinguished Lecturer
lam@alum.mit.edu

November 2002
Dr. Cheung-Wei Lam

Outline
- Design Objectives (What?)
- Key Concepts (Why?)
- Design Considerations (How?)
 - EMI ☹ / SI ☺ (EMI > si , SI > emi)
 - EMI ☹ / SI ☺
 - EMI ☹ / SI ☺
 - SI ☻ / EMI ☻
- Summary

Design Objectives

Make it pass EMI tests
- shielding
- grounding
- filtering
- noise suppression
- noise isolation
- ...

Make it work reliably
- signal quality
- timing
- crosstalk
- power/ground noise
- ...

Radiated Emission (EMI)

Key Concepts

<table>
<thead>
<tr>
<th>SI</th>
<th>EMI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Time Domain</td>
<td>Frequency Domain</td>
</tr>
<tr>
<td>$V_S(t)$</td>
<td>$I_S(f)$ ☐ $E(f)$</td>
</tr>
<tr>
<td>All High-Speed Signals</td>
<td>Clocks & I/O’s</td>
</tr>
<tr>
<td>Low-Order Harmonics</td>
<td>High-Order Harmonics</td>
</tr>
<tr>
<td>Differential Mode Signal</td>
<td>Common Mode Noise</td>
</tr>
<tr>
<td>Noise: mV, mA</td>
<td>Noise: \mathbb{V}, \mathbb{A}</td>
</tr>
</tbody>
</table>
Key SI Concepts

- Transmission Line Effects
- Crosstalk
- Ground Bounce / Power Noise (SSN/SSO/DI)
- Current Return Path

SI: Transmission Line Effects

- Impedance (Z_0) and Propagation Velocity (v)
 \[Z_0 = \sqrt{\frac{L}{C}} \quad v = \frac{1}{\sqrt{LC}} \]
- Delay = Length / Propagation Velocity
- Discontinuities → Reflection → Ringing

SI: Noise Mechanisms

- Crosstalk
 - Trace, cable, connector, package, via, RPD, ...
- Ground Bounce / Power Noise (SSN/SSO/DI)
 - Mechanism: $L \frac{dl}{dt}$
 - Input reference, supply V, signal quality, crosstalk
SI: Current Return Path

- Current flows in loops (in pairs!).
- Return current takes the least Z path.
- Discontinuities reflect & Crosstalk!

Key EMI Concepts

- All SI concepts plus the following:
 - Noise Source
 - Coupling
 - Antenna
- Shielding
- Grounding
- Filtering
- Noise Suppression
- Noise Isolation, …
- Antenna
- Ground Inductance
- Current Return Path (again!)

EMI: Antenna

- Loop Antenna (DM)
 - $EMI \mu I A f^2$
- Dipole Antenna (CM)
 - $EMI \mu I \ell f$

EMI: An Interesting Question

- Microstrip
- Coplanar Strips

Which one radiates more?

- $Z_{OM} = Z_{OC} = R_T$
- $I_m = I_c$
- $H > S$
EMI: Ground Drop

- Ground Drop is a main source of CM radiation!
- \[V_G = I_S Z_G = I_S (R_G + j\omega L_G) \]

EMI: Ground Inductance

- \(L_G \neq \) self inductance
- Pairs (S, P, V, W)
 - \(L_{GP} = L/2 \)
- Microstrip
 - \(L_{GM} \ll L \)
- Stripline
 - \(L_{GS} \ll L_{GM} \)
- Coaxial
 - \(L_{GC} \ll 0 \)

EMI: DM vs. CM Radiation

- DM Radiation
 - \(E_{DM} = \mu I_S(f) \ell H f^2 \)
- CM Radiation
 - \(E_{CM} = \mu I_{CM}(f) f \)
 - \(\mu V_G(f) f \)
 - \(\mu I_G(f) \ell L_G f \)
 - \(\mu I_S(f) \ell f^2 / W \quad (L_G \mu H / W) \)

EMI: Current Return Path

- Discontinuities \(L_G \) \(V_G \) \(EMI \)
- Discontinuities \(V_{PP} \) \(EMI \)
Design Considerations

- EMI ☺ / SI ☺
 - EMI > si
 - SI > emi
 - There are exceptions. It depends on:
 - Shielding
 - Spread Spectrum Clocking
 - ...
- EMI ☺ / SI ☺
- EMI ☺ / SI ☺
- SI ☺ / EMI ☺

E=S: Ground Planes/Grids

- EMI & Crosstalk > Signal Quality
 - SI
 - Impedance control
 - Reduce crosstalk
 - EMI
 - All the above
 - Reduce Lg [Vg

E=S: Terminations

- Reflection ☻ Ringing ☻ High-Order Harmonics
- Source T. better than End T. for EMI (> 4 dB)!

- Diode termination can increase EMI! (E=S)
 - Clean Voltage Waveform ≠ Clean Current Waveform
- DM and CM terminations
- Clocks & HS I/O’s: EMI > si
E50/S50: Impedance Matching

- Reflections do not only occur at both ends.
- Transmission line transitions:
 - Microstrip → Stripline
 - PCB Trace → Cable
 - Motherboard → Daughter Card
- DM and CM matching
- High-speed connector Z_0
- Clocks & HS I/O’s: EMI > si

E50/S50: Stubs & Vias

- Excess L or C → Reflection → Ringing
- Vias w/o switching RP’s are less of a problem.
- Design “matched” discontinuities!
 - $\frac{L}{C} = Z_0^2$
 - Reduce trace width.
 - Increase via clearance.
 - Use blind and buried vias.
 - Back-drill vias.

E50/S50: Crosstalk

- Trace-to-trace crosstalk
 - Maintain spacing.
 - Minimize parallel length.
- Pin-to-pin crosstalk
 - Design proper pinout.
- Via-to-via crosstalk
 - Provide adjacent return via when switching RP’s.
- Clocks: I/O’s: EMI > si
- Others: SI > emi

E50/S50: Return Vias

- Crosstalk > Signal Quality
- $L_{via} \leq 2.8$ nH
 - $D = 10$ mil
 - $S = 1$ in
 - $H = 50$ mil
- $M_{trace} \leq 2.5$ nH
 - $Z_0 = 65$ ohm
 - $W = S = 5$ mil
 - $L = 1$ in
- Many-to-many coupling!
- Plane edge reflections!
E/S: Traces Crossing Slots

- EMI (L_G) > Crosstalk (M) > Signal Quality (L_{ex})
- Traces crossing split planes
 - Add decoupling capacitors.
 - Add stitching capacitors.
 - Avoid them in the first place.
- Avoid unnecessary ground cuts & isolations.

E/S: Ground Bounce & SSN

- Mechanism: $L \frac{dI}{dt}$
- SI: (V_{Ref}, V_{Supply}, Signal Quality, Xtalk)
 - Minimize package L & M.
 - Use slew rate control.
 - Reduce shoot through current.
 - Use differential signaling.
- EMI (I/O noise)
 - Provide dedicated I/O power and ground.
 - Design proper pinout.

E/S: Connector & IC Pinouts

- For connectors and IC’s with Heatsink
 - EMI > Crosstalk > Signal Quality
- Provide adjacent Ground pins to Power.
- Provide adjacent Return pins to Clocks, High-Speed and I/O Signals.
- Isolate I/O and susceptible pins from noisy pins.
- It is desirable to provide additional adjacent Return pins to Clocks to reduce L_G!

E/S: More Return Pins
E/S: Stackup & Placement

- PCB Stackup for EMI
 - All SI considerations plus the following:
 - Use Ground Planes or Ground Grids.
 - 2 or more Ground Layers
 - Provide solid Ground Plane underneath Noisy IC's.
- Component Placement for EMI
 - All SI considerations plus the following:
 - Place I/O connectors on one side of the PCB.
 - Place High-Speed IC's away from I/O & PCB edges.

E/S: Differential Signaling

- Improve noise immunity. (SI)
- Reduce ground bounce. (SI)
- Reduce ground drop \(V_G = L_G \frac{dI_G}{dt} \). (EMI)
- Current mode differential signaling eliminates shoot through current. (SI & EMI)
- Minimize differential skew and maintain balance.
- HS Differential I/O's: EMI > si

E/S: Power Decoupling

- Minimize Inductance
 - Proper layout
 - On-package capacitors
 - On-die capacitance
- Use single value C’s
 - Avoid anti-resonance!
- Power plane resonance
 - Thin dielectric lowers Q due to skin loss!
 - Use lossy capacitors!
 - Power isolation!

E/S: Power Isolation

- SI: Isolate Power for Susceptible Circuits
- EMI: Isolate Clock & I/O Power
- Typical Implementation
 - Ferrite bead
 - Use routing layer!
 - Don’t overdo it!
 - Affect signal if it references to power plane! (S®)
- Backdoor termination!?
 - Starve the driver. (S®)
EJ/SK:

- Splitting clock frequencies
 - Avoid overlapping harmonics.
- Shielding
 - Ground stitching
- Grounding
 - Grounding heatsinks
 - Terminate to eliminate PCB-chassis resonance!

EJ/SK: Clocks away from Edges

- Minimize board edge fringing fields.
- Minimize \(L_G \square V_G \)!

EJ/SK:

- Filtering: I/O’s and Clocks
 - Minimize impact on signal quality.
- Spread Spectrum Clocking
 - Minimize PLL tracking skew.
- Burying Clocks (SKL)
 - Minimize DM and CM radiation.
- Skin & Dielectric Losses
 - Signal Loss and Dispersion
 - Pre-emphasis (EJ) vs. Equalization (EJ)

SK/EJ:

- Ground Isolation
 - Because of noise concerns
 - Make sure high-speed signals do not cross ground cuts.
- Timing Driven
 - Long clock routes
 - Bury them.
 - Surface clock routes
 - Use guard traces to reduce \(L_G \) and DM radiation!
Summary

- Design Concepts
 - Transmission Line Effects
 - Noise Mechanisms
 - Current Return Path
 - Antenna
 - Ground Inductance

- Compare and contrast SI & EMI considerations.
- Design rules may change but underlying concepts will remain.