High Frequency Measurements and Noise in Electronic Circuits

Douglas C. Smith
P.O. Box 1457
Los Gatos, CA 95031
Phone: 800-323-3956
Phone: 408-356-4186
Email: doug@dsmith.org
Website: http://www.dsmith.org
IC NOISE MEASUREMENT

A square loop can be used to measure inductive drop in chip bonding wires within the IC package and even in the IC die itself.

By triggering on the inductive pickup and using a second scope channel to look at each chip output one at a time, resultant glitches in the signals can be seen and measured.

A Typical IC
IC Noise Measurement Setup
IC Noise Measurement Method

1) **Slowly** rotate the loop around the chip with one corner of the loop at the chip package center.

2) **Mark** positions of the loop where pickup noise is greater than 50 mV.

3) At each of the marked positions, **measure** all chip outputs with a scope probe on the second channel.
IC Noise Measurement #1

TRIGGER MODE: EDGE

1 2.00 V/DIV
POS: 2.000 V
10.0:1 50Ω DC

3 200 mV/DIV
POS: 0.000 V
1.00:1 50Ω DC

-25.000 ns
FALLTIME (1) 2.474 ns
FALLTIME (3) 1.327 ns

3 350.0 mV
IC Noise Measurement #2
Position of Loop for Measurement
Example of Pulsed Noise

This pulse is the (di/dt) result of a very short current pulse, possibly from cross-conduction within the chip.
Characteristics of Possible SI Problems

• Usually isolated pulses

• High peak values (> 50 mV)

• Cross conduction is potential problem. (spike followed immediately by spike of opposite polarity as in the last figure)

• Spike amplitude is often bit pattern sensitive.

Note: Remember, the loop only reads 1/4 or less of the actual voltage drop across the package leads.
Although this CW noise is lower in amplitude, it could cause a significant EMC problem. There is plenty of noise to drive even “quiet” chip leads.

Example of CW Noise
Characteristics of Possible EMC Problems

• Usually continuous signals
• Can have low peak values (~ 10 mV)
• Clocks and other regular signals are possible causes.
• Spike amplitude is not usually bit pattern sensitive.

Note: Remember, only a few mV can drive a half-wave dipole to an emissions failure.
Capacitively Coupled Chip Measurements

• Measure internal signal risetimes

• Develop chip “signature” for troubleshooting

• Gives insight into chip-heatsink coupling
Using Low Capacitance Probe (no ground connection)

The probe is connected to the chip die and bonding wires through a capacitive divider (chip to copper tape and probe input capacitance). The probe ground reference is completed through probe and body capacitance to the average of the board ground. As regions of the chip change state, the probe will read voltage variations that represent the fraction of the die that changes state.
Using a Ground Lead
(to provide a solid ground reference)

Adding a ground connection for the probe gives the probe a solid ground reference to the board ground near the chip. This measurement is more repeatable and accurate than when no ground lead is used.
Using a Differential Probe
(to improve accuracy)

Using a differential probe eliminates pickup of external noise through the ground lead inductance.
Risetimes and clock rates can be seen in the waveform above. The amplitudes also give an estimate of the fraction of the chip that has changed state (ground bounce modifies this estimate).
Another Example
Edge Rates of Chip Signals Can Be Seen
FFT Parameters of Measurement
FFT Example
Measurement with Passive Differential Probe

Resistive input impedance of the passive differential probe reduces low frequency response.
Chip Noise Summary

• Chip noise as a result of package parasitics (inductance and crosstalk) can result in strange problems.

• New chips and old chips, implemented in a new technology, should be evaluated to make sure the package can support the chip speed.

• A good scope, voltage probe, home-made magnetic probe, and copper tape can be very useful for evaluating packages.