Power Integrity and Ground Bounce Simulation of High Speed PCBs

Presentation #11
Agenda

- **Power Integrity (PI) Design Flow**
 xDSM Board for Fiber Optic/Broadband Wireless Network
 - Resonances on Power/Ground Plane Structure
 - Concept of Target Impedance
 - Decoupling Capacitor Effects on Power Delivery System (PDS) Impedance
 - Full-Wave Spice Model for Power/Ground Planes Using Slwave
 - Ground Bounce Simulation Using Full-Wave Spice

- **Slwave Simulation vs. Ansoft HFSS/Measurement**
Power Integrity Design Questions for Multi-Layer PCBs

Q1 : How to layout power/ground plane’s structure?

Q2 : How to place IC chips?

Q3 : How to select decoupling capacitors?

Q4 : How to place the decoupling capacitors ?

Q5 : How many decoupling capacitors are needed?

Q6 : What happens with Ground Bounce Voltage?
An xDSM Board for Fiber Optic and Broadband Wireless Network!

Application:

- Fiber Optic and Broadband Wireless Network System.
- 256 QAM/OFDM- 5 Times Larger Bandwidth Efficiency than On/Off Key.

PI Design Goal:

Power/Ground Bounce below 5% of Supply Voltage.
Layer Stack Up and Component Arrangement on xDSM Board

- Power plane size 11x7.2 inches
- FR4 ER=4.4 loss tangent=0.02
- Ground 1.4 mils (copper)
- Substrate 23.98 mils
- Power 1.4 mils (copper)
Answers for

Q1 : How to layout power/ground plane’s structure?

Q2 : How to place IC chips?

Basic Concept :

1. Resonant Mode Voltage Distribution

2. Model IC chip as current sink/source
Pre-Layout and Computing Resonant Modes

Compute the natural resonant modes for this power/ground structure

\[E(t) \approx e^{ist} \]

\[s = \omega_{\text{real}} + j\omega_{\text{imaginary}} \]
Resonant Modes and Surface Voltage

1.073GHz

1.639GHz

Board Center at Voltage peak/dip for these modes!

1.96GHz

0.536GHz

Board Center at Zero Voltage node for these modes!

0.81GHz

0.97GHz

1.60GHz

1.35GHz

1.72GHz

1.60GHz

1.35GHz
How to Place IC?

In this case, we have an IC chip which draws 2A at 0.2 ns. Consider placing this IC at the board center (5500,3600) mils.

According to the previous plots and the proposed IC location, we can easily predict that only 1.0730, 1.63959 and 1.9600 GHz resonant modes will be excited!
Frequency Response of Voltage Probes when IC Chip Draws Current

There is no resonance below 1GHz, when IC is at the center of the board.

Comparison of Voltage Frequency Response for IC at (5500,3600) and (7000,3600)mils location
Answers for

Q3 : How to select decoupling capacitors?

Q4 : How to place the decoupling capacitors?

Q5 : How many decoupling capacitors are needed?

Q6 : What happen on Ground Bounce Voltage?

Basic Concept :

1. Plane Impedance due to different structures
2. IC Power/Ground terminal pair as a port
3. Target Impedance
4. Effects of Decoupling Capacitors on PDS
5. Non-Ideal Effects of Decoupling Capacitors
1. The Impedance looking into PDS at the device should be kept low over a broad frequency range (from DC to several harmonics of clock frequency)

2. The Desired Frequency Range and Impedance Value is called Target Impedance.

3. The Target impedance goal is set with the help of allowable ripple on the power/ground plane over a specified frequency range.
Target Impedance Calculation

\[Z_{\text{Target}} = \frac{(\text{Power}_\text{Supply}_\text{Voltage}) \times (\text{Allowed}_\text{Ripple})}{\text{Current}} \]

Example:

\[Z_{\text{Target}(3.3v)} = \frac{(3.3v) \times (5\%) \times 2A}{2A} = 82.5 \, m\Omega \]

Target Impedance is the goal that designers should hit !!!
Low Plane Impedance Minimizes Reflective SSN

\[V_L(t_0) = \frac{R_L}{R_L + Z_0} V_s \]

\[V^-(t_0) = V_s - V_L(t_0) = \frac{Z_0}{R_L + Z_0} V_s \]

If \(Z_0 \ll R_L \), then \(V^-(t_0) \to 0 \)
PDS Components and their Effective Frequency Range on Target Impedance

Mag. of Z

Z_{target}

$|Z|$

1KHz 1MHz 100MHz GHz

Switching Power Supply
Electrolytic Bulk Capacitors
High Frequency Ceramic Capacitors
Power/Ground Planes
Compute Bare Board S-, Y-, Z-Parameters

Impedance of Bare Board w/o De-caps

An HF decoupling capacitor before 236.9MHz

74.33 nF
Bare Board Parallel Resonant Frequencies

The resonant frequencies are 1.07176 and 1.63699 GHz.
Impedance Comparison for IC at (5500,3600) and (7000,3600) mils

Additional parallel resonance at 535.91MHz for IC at (7000,3600)

IC at (7000,3600)

IC at (5500,3600)
Simulate the Effect of Dielectric Thickness on Plane Impedance

60->40->20 mils
Increase capacitance, Decrease Inductance, Lower Impedance, Velocity does not change (No Resonance Shift)
Simulate the Effect of Dielectric Constant

Er 8.4->4.2->2.1
Increase capacitance, Same Inductance, Lower Impedance, Velocity change (Resonance shift)

Smaller Dielectric Constant
Four Layer Power/Ground Plane Structure

p/g plane size 11x7.2 inches

(0,0) mils

Ground 1.4 mils (copper)
FR4 ER=4.4 loss tangent=0.02
Substrate 23.98 mils

Power 1.4 mils (copper)
FR4 ER=4.4 loss tangent=0.02
Substrate 23.98 mils

Power 1.4 mils (copper)
FR4 ER=4.4 loss tangent=0.02
Substrate 23.98 mils

Ground 1.4 mils (copper)

Compare Impedance for 2/4 layers

(11000, 7200) mils

Larger Capacitance/Smaller Inductance
Function of Decoupling Capacitors

1. Supply current bursts for fast switching circuit (PDS issue)

2. Lower impedance of the power delivery system and prevent energy transference from one circuit to another (PDS issue)

3. Provide AC connection between power and ground planes for signal return current

4. Control EMI
The Non-Ideal Effect Analysis of Decoupling Capacitors using Ansoft Full-Wave Spice

Decoupling Capacitor Impedance for Different ESL

<table>
<thead>
<tr>
<th>Capacitor1</th>
<th>Capacitor2</th>
<th>Capacitor3</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>1nF</td>
<td>1nF</td>
</tr>
<tr>
<td>ESR</td>
<td>100mOhm</td>
<td>100mOhm</td>
</tr>
<tr>
<td>ESL</td>
<td>0.1nH</td>
<td>0.5nH</td>
</tr>
</tbody>
</table>

Effect of ESL
ESR Effect on Decoupling Capacitors

<table>
<thead>
<tr>
<th>Capacitor</th>
<th>C</th>
<th>ESR</th>
<th>ESL</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1nF</td>
<td>100mOhm</td>
<td>0.5nH</td>
</tr>
<tr>
<td>2</td>
<td>1nF</td>
<td>500mOhm</td>
<td>0.5nH</td>
</tr>
<tr>
<td>3</td>
<td>1nF</td>
<td>1000mOhm</td>
<td>0.5nH</td>
</tr>
</tbody>
</table>

Effect of ESR

Less ESL
Parallel Capacitors (same values) and Decoupling Capacitor Impedance
Parallel Capacitors (skewed values) and Decoupling Capacitor Impedance

Induce parallel resonance
Physical High Frequency Capacitor Characteristics

1. High frequency ceramic capacitors are an increasingly important part of the PDS.

2. Calculations for the number of capacitors necessary to maintain a target impedance are made in the frequency domain.

3. **NPO** capacitors have the **lowest ESR** and **best temperature and voltage properties**, but are **only available up to a few nF**.

4. **X7R** capacitors have reasonable voltage and temperature coefficients and are **available from several nF to several uF**.

5. **X5R** is **similar to X7R**, but with **reduced reliability** and are being extended to **100uF**.

6. **Y5V** dielectric is used to achieve high capacitance values, but has **very poor voltage and temperature characteristics**.
Calculate the Required Minimum Capacitance Value at 1MHz

\[C_{\text{min}}@1\text{MHz} = \frac{\Delta I}{2\pi f \Delta V} = 1.929 \times 10^{-6} \text{F} \]

\[\Delta I = 2\text{A} \]
\[\Delta V = 3.3 \times 0.05 \]
\[f = 1\text{MHz} \]
Caparray_1 and its Impedance

<table>
<thead>
<tr>
<th>CAPARRAY_1</th>
<th>C (F)</th>
<th>L (H)</th>
<th>R (Ohm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>C1-C22 (22ea)</td>
<td>1.00E-07</td>
<td>2.00E-09</td>
<td>0.2</td>
</tr>
</tbody>
</table>

Place 22xcap (1e-07F, 0.2Ohm, 2e-09H) near the center of board (5500,3600)

SIwave Simulation of Caparray_1 Effect on Bare board
Effect of Caparray_1 on Board Impedance

New Parallel resonance at 222.75MHz
Time Domain Power/Ground Bounce
Waveform w/ Caparray_1

Power/Ground Bounce Waveform not within 5%(3.3V)!!!
Need More Decaps

Add More Caps

Caparray_2
Add Caparray_1 and Caparray_2

Place 22xcap (1e-07F, 0.2Ohm, 2e-09H) near the center of board (5500, 3600)
Plane Impedance w/ Caparray_1 and Caparray_2

Parallel resonance will occur here

Bare Board

Caparray_1

Caparray_2

Parallel resonance will occur here
Time Domain Power/Ground Bounce Waveform w/ Caparray_1+_2

Ground Bounce has been improved a lot!!! But, still doesn't meet the design goal.

Add more Caps Caparray_3
Add Caparray_1+_2+_3

Place
22 x cap (1e-07F, 0.2Ohm, 2e-09H)
22xcap (1e-08F, 0.2Ohm, 2e-09H)
22xcap (1e-09F, 0.2Ohm, 1e-09H)

near the center of board (5500,3600)
Caparray_1 vs Caparray_1+_2 vs Caparray_1+_2+_3
Impedance
Time Domain Power/Ground Bounce Waveform w/ Caparray_1+_2+_3

Almost meets the design goal of Power Bounce.

Next Step

Export Entire Board’s Full Wave Spice Model.
Positions of the Decoupling Capacitors and IC

<table>
<thead>
<tr>
<th>CAPARRAY</th>
<th>C (F)</th>
<th>L (H)</th>
<th>R (Ohm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>C1-C22 (22ea)</td>
<td>1.00E-07</td>
<td>2.00E-09</td>
<td>0.2</td>
</tr>
<tr>
<td>C23-C44 (22ea)</td>
<td>1.00E-08</td>
<td>2.00E-09</td>
<td>0.2</td>
</tr>
<tr>
<td>C45-C66 (22ea)</td>
<td>1.00E-09</td>
<td>1.00E-09</td>
<td>0.2</td>
</tr>
<tr>
<td>C67-C78 (12ea)</td>
<td>1.00E-09</td>
<td>5.00E-10</td>
<td>0.2</td>
</tr>
<tr>
<td>C79-C80</td>
<td>2.50E-09</td>
<td>5.00E-10</td>
<td>0.2</td>
</tr>
<tr>
<td>C81-C82</td>
<td>5.00E-09</td>
<td>5.00E-10</td>
<td>0.2</td>
</tr>
<tr>
<td>C83-C84</td>
<td>1.00E-08</td>
<td>8.00E-10</td>
<td>0.2</td>
</tr>
<tr>
<td>C85-C86</td>
<td>2.50E-08</td>
<td>8.00E-10</td>
<td>0.2</td>
</tr>
<tr>
<td>C87-C88</td>
<td>5.00E-08</td>
<td>8.00E-10</td>
<td>0.2</td>
</tr>
<tr>
<td>C89-C90</td>
<td>1.00E-07</td>
<td>8.00E-10</td>
<td>0.2</td>
</tr>
<tr>
<td>Power Supply Decap</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C91</td>
<td>1.00E-04</td>
<td>5.00E-09</td>
<td>0.01</td>
</tr>
<tr>
<td>C92</td>
<td>2.70E-06</td>
<td>5.00E-09</td>
<td>0.01</td>
</tr>
<tr>
<td>C93</td>
<td>1.00E-07</td>
<td>1.00E-09</td>
<td>0.01</td>
</tr>
<tr>
<td>C94</td>
<td>1.00E-08</td>
<td>1.00E-09</td>
<td>0.01</td>
</tr>
<tr>
<td>C95</td>
<td>1.00E-09</td>
<td>1.00E-09</td>
<td>0.01</td>
</tr>
<tr>
<td>Decap54 (7086.6,5511.8)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C96-C102</td>
<td>1.00E-07</td>
<td>2.00E-09</td>
<td>0.2</td>
</tr>
<tr>
<td>Decap64 (8661.4,5511.8)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C103-C109</td>
<td>1.00E-07</td>
<td>2.00E-09</td>
<td>0.2</td>
</tr>
</tbody>
</table>
Export Full-Wave Spice Model for PCB Plane

IC43 (draw 2A) at location 43

Port for IC at (4,3)

Port for IC at (5,4)

Port for IC at (6,4)

Port for VRM at (1,1)

IC64 at location 64

IC54 at location 54

Full Wave Spice Model

The target impedance see at IC(4,3)
Current Sink and Power/Ground Bounce Voltage at IC(4,3)

Slightly over spec.
Need to add more decaps

Enhanced Decaps

<table>
<thead>
<tr>
<th>DECAP GP</th>
<th>Value 1</th>
<th>Value 2</th>
<th>Value 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>C67-C78 (12ea)</td>
<td>1.00E-09</td>
<td>5.00E-10</td>
<td>0.2</td>
</tr>
<tr>
<td>C79-C90</td>
<td>2.50E-09</td>
<td>5.00E-10</td>
<td>0.2</td>
</tr>
<tr>
<td>C81-C82</td>
<td>5.00E-09</td>
<td>5.00E-10</td>
<td>0.2</td>
</tr>
<tr>
<td>C83-C84</td>
<td>1.00E-08</td>
<td>8.00E-10</td>
<td>0.2</td>
</tr>
<tr>
<td>C85-C86</td>
<td>2.50E-08</td>
<td>8.00E-10</td>
<td>0.2</td>
</tr>
<tr>
<td>C87-C90</td>
<td>5.00E-08</td>
<td>8.00E-10</td>
<td>0.2</td>
</tr>
<tr>
<td>C89-C90</td>
<td>1.00E-07</td>
<td>8.00E-10</td>
<td>0.2</td>
</tr>
</tbody>
</table>
Schematic with Total Decaps

Add Enhanced Decap_gp

All Decaps to be added in this PCB:
Decaparray_1+ _2+ _3+Enhanced Decap_gp
IC(4,3) Impedance Value w/wo Decap_gp
Current Sink and Power/Ground Bounce Voltage on IC(4,3)

Bingo!!!

We meet the PI design goal.
Power Integrity Design Flow using Full-Wave field solver (Ansoft SIwave)

STEP 1: Resonant modes

1.1 Pre-layout PDS’s power/ground plane structures (Layer stack-up, Materials, Shapes) to make the inherent natural resonant modes (usually first) not occur with the target impedance required band-width or in the higher band.

1.2 Preview the voltage distribution of the resonant mode, avoid placing ICs which draw large currents near the resonant’ voltage peaks/dips. The reason is when the source is closer to the peaks/dips it is easier to excite the resonant modes.

STEP 2: Frequency Sweep

2.1 Probe voltage

Replace the IC with current sources around their layout placement location, at the same time, put voltage probes on the desired locations to test that locations’ voltage frequency response. In the voltage frequency response, the frequencies of voltage peaks will show which resonant mode has been excited.

2.2 Surface voltage

Based on the voltage peak frequencies, plot the surface voltage distribution on that frequency, place the required decoupling capacitor on the voltage peaks/dips location (how to place decoupling capacitors)
Power Integrity Design Flow using Full-Wave field solver (Ansoft SIwave) cont’d

STEP 3: S,Y,Z Parameters (include export Touchstone SNP file)

3.1 Compute/plot one port (IC location) Z parameter (usually log-log scale in Hz)
 From the Z frequency response, figure out the required “total capacitance, parasitic inductance and ESR” which should contributed by the physical capacitors (this will determine the required size of decoupling capacitors)

3.2 Use embedded Ansoft Full-Wave Spice to investigate the physical de-coupling capacitor effect (resonant, ESL and ESR, parallel skew etc.)

3.3 From the actual AC sweep response to select the required capacitors which should meet the total required “R/L/C value”

3.4 Place the capacitor on different locations to check the path inductance effect (this will determine the location of the de-coupling capacitors)

3.5 Use multi-ports Z parameter to check the trans-impedance

3.6 Use multi-ports S-parameters to investigate the signal transmission and coupling

STEP 4: export Full-Wave Spice model and Spice simulation

Use Spice (e.g. Ansoft Full-Wave Spice) to simulate the supply voltage fluctuation, simultaneously switching noise in time domain
Examples Involving Measured Data

With Comparisons to SIwave
HFSS vs. SIwave simulation
CHTTL Test Board for Mixed-Signal Design with a Split Power Plane
Four Layer PCB Power Integrity

- Examine S21 for board with and without Decoupling Capacitors
- Compare Measurement data to SIwave data
- Four 0.000138” copper layers
- Three 0.04” FR-4 layers
- Ports and Capacitors between layers 2 and 4
- Examine S21 for board with a shorting pin
- Compare Measurement data to SIwave data
- Two copper layers
- One 44 mil FR-4 layer
- Ports and Capacitors between layers 2 and 4
Power Island with PEC Bridge

- Examine S21 for board with a square (3x3cm) power island
- Compare Measurement data to SIwave data
- Two copper layers
 - One 45 mil FR-4 layer
Conclusions

- The PI Flow to make the impedance of the PDS meet the target impedance using Ansoft SIWave has been shown.

- This Flow can be used in post layout analysis to get the optimum decoupling capacitors and save money.

- Meeting the PI target will help reduce the SSN and SI Issues.

- The approach of Lumped and T-cell is no longer valid due to the wave effect dominance on higher-speed.

- Ansoft SIwave uses Full-Wave EM Technology to account for the wave effect on PDS and to meet the future high speed requirement.

- SIwave simulation agrees with HFSS/Measurement.

- SIwave provides a fast and easy design/analysis flow to meet Power Integrity and to prevent under/over design condition.