Custom IC Blocks for Enabling Digital Control in Switching Power Converters

Dragan Maksimovic and Regan Zane

July 11, 2003

Colorado Power Electronics Center
University of Colorado, Boulder
Outline

• Motivations & CoPEC directions
• “Buffalo switcher”
 – Complete 1 MHz digital PWM controller IC
 – Hybrid digital PWM
 – Delay-line A/D
• CoPEC research highlights
• Education:
 – focus on power electronics & mixed-signal IC design
Power Electronics Applications

Portable devices
- On-chip power management / mW
- Power supplies for LCD-s / hundreds of mW
- Switching voltage regulators / up to tens of Watts

Computers and Consumers Electronics
- Power supplies for components / several watts
- Micro-processor supplies: Voltage Regulator Modules (VRMs) / up to hundreds of Watts
- Off-line power supplies / up to kW

Telecomm. equipment
Industrial
Automotive
Lighting (HID, fluorescent)
Aerospace
PDA Example: Power Management

- **USB**: Wired I/F
- **Bluetooth**: Wireless Access
- **Wireless Ethernet 802.11b**: Wireless I/F

Processing Core
- **Memory Expansion**
- **SDRAM**
- **SRAM**
- **FLASH**
- **ROM**
- **Power Switch**
- **Logic Bus Drvr**

Supply Voltage
- **1.5 / 1.8V / 2.5V Core Supply**

System Supply
- **3.3V / 5V**

Power Management
- **Supply Voltage Supervisor**
- **Low-Dropout Regulator**
- **Buck Converter**
- **Buck-Boost Converter**
- **Boost Converter**
- **Charge Pump**
- **CCFL Ctrl**

Audio Pwr Amp
- **Microphone Amp**

Microphone
- **Loudspeaker**
- **Headphones**

Touchscreen Control
- Color or B/W LCD with Touchscreen

Battery
- **Li-Ion Protector**
- **Li-Ion Monitor**
- **Battery Charger**

Wall Supply
- USB Power

July 11, 2003
Buck Switching Converter Example

\[V_{out} = \left(D \right) V_{in} \]

- Switching operation controls the average value of \(v_D \)
- LC low-pass filter reduces the voltage ripple in the dc output \(V_{out} \)
- High switching frequency (hundreds of kHz to MHz), small size
- Ideally lossless, very high efficiency in practice
- Tightly regulated \(V_{out} \) through a feedback loop
Controller Implementation: Analog vs. Digital

Analog Implementation

- Circuit diagram with labeled components: V_{in}, V_{out}, M, L, C, R, D, H
- Comparator $v_c(t)$, error amplifier e(t), saw-tooth waveform generator V_M, and analog controller

Digital Implementation

- Circuit diagram with labeled components: V_{in}, V_{out}, M, L, C, R, D, H
- DPWM and A/D components
- Compensator with equation: $d[n]=f(d[n-1], d[n-2], \ldots,e[n],e[n-1], \ldots)$
- Conversion from analog to digital: $e[n]$, $Hv_{out}[n]$, $V_{ref}[n]$
Research Motivation – Why Digital?

- Analog PWM controllers (30 year old technology)
 - Simple, low-cost
 - Well established design practices
- What can be accomplished with digital control in power electronics applications?
 - Programmability (e.g. one controller can serve a much wider range of applications)
 - Elimination or reduction of the number of passive components
 - System integration (e.g. dynamic voltage scaling), diagnostics, etc.
 - Static and dynamic performance (e.g. through adaptive control techniques)
 - Reduced sensitivity to tolerances, process and temperature variations
 - Reduced cost
Practical Limitations

- **A/D** – A complete analog controller could be simpler than a high-speed, high-resolution A/D
- **Processing unit** - Available microcontroller/DSP systems are still too slow, or too complex/costly
- **DPWM** – High-speed/High-resolution (ns) digital pulse width modulators are needed

New design and implementation approaches for all functional blocks are needed
CoPEC Research Program
Power Electronics and Mixed-Signal IC Design

New SMPS-specific controller building blocks

New converter configurations tied to more sophisticated control techniques

New controller architectures for wide range of applications

Converter/controller co-design for significant gains in performance, size and/or cost:
• reduced size of passive components
• improved efficiency
• improved dynamic responses, etc.

New control algorithms
• parameter/state estimation
• adaptive control
• nonlinear control, etc.
Modeling techniques
Examples of CoPEC Research Results

• Complete 1 MHz digital PWM controller IC
 – small size, programmable compensator, no discretes
• Standard-cell based A/D converter ICs
 – small size, fast sampling, scalable with digital technology
• Digitally controlled 3.3 V, 20 A DC power supply
 – chipset for isolated DC power supplies
• Digital predictive current-mode control
 – very fast response
 – applications to PFC and DC-DC converters
• Digitally-controlled power-factor correction rectifiers
 – order-of-magnitude improvement in dynamic response
Buffalo Switcher

Complete High-Frequency Digital PWM Controller IC

- 1 MHz switching frequency
- Programmable compensator
- 0.5µ CMOS technology
- Chip area: 0.96 mm²
- All-digital, HDL-based design
- Standard digital design flow:
 - HDL (Verilog) based design
 - Synthesis to standard-cell gates
 - Automated place & route
Chip architecture

Digital pulse-width modulator

System clock

Programmable compensator

Look-up table programming interface

A/D converter

External memory

Table A

Table B

Table C

Out

Sense

July 11, 2003
A/D requirements

Static voltage regulation \(\Rightarrow V_q \leq \Delta V_o \)

Only a few digital error outputs needed

Dynamic voltage regulation \(\Rightarrow \) small conversion range
Delay-line A/D

Analog input is the supply voltage VDD for a chain of logic gates

Digital output e

Delay t_d versus VDD

Digital output q (in “thermometer” code)

July 11, 2003
Delay-line A/D Operation

$\begin{align*}
q &= \{11111100\} \\
e &= -2
\end{align*}$
Delay-line A/D Experimental Results

Error e

$V_q = 53\text{mV}, \sigma = 3.6\text{mV}$

$f_s = 1\text{ MHz sampling}$

Advantages:
- Small area/low power
- Averaging over conversion time
- All digital implementation

Problem:
- Basic configuration is highly susceptible to process/temperature
- How to implement calibration to a reference voltage?
- Delay blocks constructed with standard cells
- Matched “strobe delay” added to provide self-calibrated reference point
Strobe-Calibrated Delay-Line A/D Exp Results

- 1.8 V reference
- 250ns typical conversion time (500ns worst case)
- Standard-cell HDL-based design, 0.5μ CMOS process
- Automated place-and-route of primary and matched delay lines
- Tested over the temperature range from -40°C to 100°C

Experimental characteristics over temperature
Strobe-Calibrated Delay-Line A/D Exp Results

- Average offset: 1.56mV (4% LSB)
- 11 of 18 chips < 2 mV offset
- Good performance holds over temperature
- The worst offset prototype chip of 18 samples at the worst temperature corner: -7.3 mV offset
- Total current consumption:
 - less than 100 μA

Histogram of the measured offset over 18 prototype chips
Look-up Table Based

Programmable Compensator

Duty-cycle to DPWM

\[d[n+1] \]

8-bit

\[e[n] \]

\[e[n-1] \]

\[e[n-2] \]

\[T_s \]

\[T_s \]

\[T_s \]

Programmable compensator

External memory

PID compensator: \[d[n+1] = d[n] + a e[n] + b e[n-1] + c e[n-1] \]

- “Zero” steady-state error
- Programmable response
- Very small area, very low power
Conventional Counter-based DPWM Design

\[f_{clk} \geq 2^{N_{DPWM}} \cdot f_s \]

- \(f_{sw} \): switching frequency
- \(f_{clk} \): processor clock frequency
- \(n_{DPWM} \): number of bits of DPWM

10-bit @ 1 MHz \(\Rightarrow \) 1 GHz clock signal!?
High-Resolution Hybrid DPWM

Combines a **delay line** (ring oscillator) with a **counter** to reduce the maximum clock speed

Conventional DPWM:
\[f_{\text{clk}} = 2^n \cdot f_s \]

Hybrid DPWM:
\[f_s \leq f_{\text{clk}} \leq 2^n \cdot f_s \]

Prototype:
- \(n = 8 \) bits
- \(f_s = 1 \) MHz
- \(f_{\text{clk}} = 8 \) MHz

July 11, 2003
DPWM Experimental Results

Output duty ratio [%]

$\text{DPWM input (decimal)}$

$\text{Output duty ratio [%]}$
High-Resolution Hybrid DPWM

Hybrid DPWM combines a delay line (ring oscillator) with a counter to reduce the maximum clock speed

Conventional DPWM:
\[f_{\text{clk}} = 2^n \cdot f_s \]
- \(n = 8 \text{ bits} \)
- \(f_s = 1 \text{ MHz} \)
- \(f_{\text{clk}} = 256 \text{ MHz} \)

Hybrid DPWM:
\[f_s \leq f_{\text{clk}} \leq 2^n \cdot f_s \]

Buffalo switcher hybrid
DPWM prototype:
- \(n = 8 \text{ bits} \)
- \(f_s = 1 \text{ MHz} \)
- \(f_{\text{clk}} = 8 \text{ MHz} \)
Delay-line/counter combination provides low power consumption, low on-chip area and high resolution at high frequencies
10-Bit Hybrid DPWM Implementation

- 10-bit resolution
- Programmable switching frequency: 750 kHz, 400 kHz, 200 kHz and 100 kHz/1.3 ns resolution
- 32 times higher clock frequency
- 0.5μ CMOS
- Active chip area: 0.16 mm²
- Completely HDL coded
Experimental Digitally Controlled Power Supply

\[L = 1 \, \mu\text{H}, \quad C = 22 \, \mu\text{F} \]
\[4 \, \text{V} < V_g < 6 \, \text{V} \]
\[V_o = 2.7 \, \text{V} \pm 25 \, \text{mV} \]
\[0 < I_o < 1.5 \, \text{A} \]
\[f_s = 1 \, \text{MHz} \]
Experimental Results

Static line regulation

Output voltage error

Input voltage

Static load regulation

Output voltage error

Load current

Load Transient Response

V_o(t) [50 mV/div]

I_o(t) [1 A/div]
Conclusions

• Complete 1 MHz digital PWM controller IC
• New architecture and HDL-based design of the key building blocks:
 – Calibrated delay-line A/D
 – Programmable look-up table compensator
 – Hybrid DPWM
• Small area, low power, fast response
• Design scales with digital technology
• Open possibilities for a new generation of controller ICs (standard parts and ASICs) for power electronics
Analog implementation

- Opto-coupler operates in linear mode

Digital solution based on serial communication

- Opto-coupler operates in digital mode (as a logic gate)
- Transfers just the error signal
- Potential for less conservative design of the feedback loop
Isolated DC-DC: Test System

Tyco HW 100F
- Isolated converter
- 36 V ÷ 72 V to 3.3 V
- up to 20 Amps load
- 400 kHz switching frequency
- Replaced original analog current-mode controller on the board
Experimental Results

![Graph showing experimental results for output voltage and load current for original analog controller and digital controller IC set.]

- Output voltage
- Load current (25% and 50%)

Original analog controller

Digital controller IC set
Digital Controller for AC/DC PFC

Switching Power Converter

Rectified AC line voltage input

\[v_{in}(t) \]

\[i_g(t) \]

\[d(t) \]

A/D

A/D

DPWM

Analog/Digital Interface

\[v_{in}[n] \]

\[i_g[n] \]

\[d[n] \]

\[v_n(t) \]

\[v_o(t) \]

Deadbeat Control

\[u[n] = u[n-1] + K_v (b_1 e_v[n] - c_1 e_v[n-1]) \]

Voltage loop regulator

\[e_v[n] \]

\[v_o[n] \]

Comb Filter

\[H(z) = \frac{(1 - rz^{-1}) \cdot (1 - z^{-(M+1)})}{(1 - z^{-1}) \cdot (1 - r^{-M+1} - z^{-1})} \]

Sampling frequency selector

Computational Unit

Load
PFC Experimental Results (current loop)

Line frequency: 800Hz

Switching frequency: 200KHz
THD: 2.2%

Switching frequency: 100KHz
THD: 2.4%

Dead-beat digital current mode control: near-perfect PFC
even in demanding next-generation avionics applications
(AC system with the line frequency up to 800 Hz)
PFC Experimental Results (voltage loop)

Conventional voltage loop

With STCF

High-bandwidth loop with and without a notch filter

Without comb
THD > 20%

With comb
THD = 4.3%
Other CoPEC Research Projects (2003)

- **Advanced digital control of DC-DC converters**
 - High-performance predictive digital current-mode control for DC-DC converters (TI)

- **Power management for low-power electronics**
 - Digital DC-DC switcher for battery-powered systems (NSC)
 - Adaptive DC-DC converters for RF power amplifiers (DARPA)
 - Adaptive DC-DC converters and power management architecture for base-band μP/DSP (NSF, NSC)
 - Energy harvesting for wireless sensors and Implantable sensors for neuronal recording (Coleman Institute)

- **Microprocessor power supplies**
 - Multi-phase digital controller for microprocessor power supplies (Artesyn)

- **Off-line switching power supplies**
 - Modular mixed-signal control for electronic ballasts (GE)
 - Digital controllers for solar/utility power system (Philips)
 - Digitally controlled matrix converters for wind power system (NREL)
CoPEC Educational Program Objectives

• Strong undergraduate and graduate programs in power electronics and mixed-signal IC design
• Internship and job opportunities for students
• Continuing education
 – Courses available through CATECS
 – Certificate program in power electronics
• Technology transfer to CoPEC sponsors
 – Jointly defined and directed projects
 – Access to CoPEC IP
Our visibility is increasing, and we are attracting more students to the power electronics and micro-electronics areas.
With increased visibility and availability of projects, we are able to attract better students into our program
4228/5008: Analog IC
- Spring 2003
- Analog portion only

5007: Mixed-Signal IC
- Fall 2003
- Full System
- Emphasis on mixed blocks

Mixed-Signal IC Design Flow

System/Application Specification

IC Specification

IC Functional Description
Analog/Digital Distribution

Functional Analog Circuit & Verilog-A

Complete Analog

Mixed-Signal Simulation

Functional Digital Verilog/VHDL

Synthesis

Complete Design

Layout
Custom, Place & Route, DRC

Verification
LVS, Extraction

Tape-Out

Analog Sim

Digital Sim
Analog IC Course Outline

- **Week 1**: Review circuits I-II
 - Text Ch. 1, Appendix A & C; Supplementary notes
- **Week 2**: Review CMOS technology and device models
 - Text Ch. 2-3
- **Weeks 3-4**: Analog CMOS sub-circuits
 - Text Ch. 4
- **Weeks 5-7**: CMOS amplifiers
 - Text Ch. 5
- **Weeks 8-10**: CMOS operational amplifiers
 - Text Ch. 6
- **Weeks 11-13**: High-performance CMOS op-amps
 - Text Ch. 7
- **Weeks 14-15**: Comparators and select advanced topics
 - Text Ch. 8, Supplementary notes

Text used: Allen/Holberg, Gray/Meyer, Johns/Martin
Mixed-Signal IC Lecture Topics

Comparators
- 2-stage amp, hysteresis, latched, high-speed
- Sample & Hold Circuits

Discrete-Time Signals (Fundamentals)

Sampled-Data Circuit Techniques
- SC & SI Circuits: Filter Design, Amplifiers, Applications
- Non-idealities: clock-feedthrough, matching

Data Converters
- Fundamentals
- Nyquist Rate D/A, A/D
- Oversampling Converters

System Simulation
- Software Preparation: technology files, model files, standard cell libraries, software setup
- Functional Simulation: Verilog-A and Verilog HDL languages, hierarchical designs with multiple cell-views
- Mixed-Signal Simulation: co-simulation of analog & digital, functional and circuit level blocks in the Cadence tools
- Ballast Controller & PLL Case Studies

Physical Layer (time & setup permitting)
- Floorplanning & Layout: custom and semi-custom layout in Cadence
- Practical Considerations: matching, digital/analog isolation, latch-up, ESD and pad design, power distribution, noise coupling
- Verification: LVS, DRC, extracted simulation
- Fabrication: GDSII extraction to foundry
Mixed-Signal IC Final Project

- Select a mixed-signal project that targets a specific application
- Work in teams of 1 to 4
- Deliverables include:
 - **Proposal:** Create a final project website with an overview of the target application, proposal of the digital & analog projects.
 - **Functional Design:** Preliminary functional schematic/diagram, which must include at least one functional block of your project.
 - **Final Design Review:** Final in-class presentation on your project. The complete “front-end” design of the projects must be complete, ready for transition to a layout engineer. Time permitting, various phases of layout and verification may be required as well.

Local Industry Involvement (?)

- Suggest relevant project/research topics
- Be involved with design and/or final reviews
- Fund fabrication of best designs \(\rightarrow\) hold competition?