A Dual-Core Multi-Threaded Xeon® Processor with 16MB L3 Cache

Stefan Rusu
Intel Corporation
Santa Clara, CA
Outline

• Processor Highlights
• 65nm Process Technology
• Block Diagram
• L3 Cache Overview
• Sleep and Shut-off Modes
• Long-Le Transistor Usage
• Clock and Power Distribution
• Package Details
• DFT/DFM Features
• Thermal sensors
• Frequency Shmoo
• Summary
Processor Highlights

- Dual core, four threads
- 1 MB unified L2 per core
- 16 MB unified L3
- 435 mm² die size
- 1.328 B transistors
- 121 M transistors per core
- 3.4 GHz at 1.25 V and 150 W TDP
- 800 MT/s 3-load front-side bus interface
- Plugs in existing platforms

Largest cache and transistor count for an x86 processor
65nm Process Technology

- 1.2 nm gate oxide
- NiSi for low resistance
- Second generation strained silicon

- 8 Cu interconnect layers with low-K CDO dielectric
• Shared 16MB L3 cache
 – Better efficiency - one core can use more than half of the total cache
 – No need for coherency traffic between caches

• Support for Intel Virtualization Technology

• Hyper-Threading Technology

• Enhanced Intel SpeedStep® Technology
L3 Cache Floorplan

- 0.624 um² bit cell
- 0.75 Watts / MB average power
- Only 0.8% of all array blocks powered-up for each access
- 256 regular 64kB sub-arrays
- 32 redundancy 68kB sub-arrays

Legend:
- Regular Sub-array (32 bits)
- Redundancy Sub-array (34 bits)
- Repeaters
- CLK Spine + Repeaters
L3 Sub-Array and Sleep Partitioning

- **Bank 0**: blk0
- **Bank 1**: blk1, blk2, blk3
- **Bank 2**: blk4, blk5, blk6, blk7
- **Bank 3**:

Word-line Driver
- M2, BL
- M3, WL

Sense amp + write circuit

Sleep Resolution

Timer

Reg SA: 128 cols
Rdn SA: 136 cols

256 rows

PMOS-sleep

NMOS-sleep
Column Redundancy Features

- **Data Array**
 - Two redundancy columns for each 290-bit chunk
 - Repair up to two random defects in each cache line

- **Tag Array**
 - One redundancy column for each 36-bit tag line
 - Repair one random defect in each entry
L3 Cache Sleep and Shut-off Modes

Active Mode

- Sub-array
- Virtual VSS
- Block Select
- Sleep Bias
- Shut off

Sleep Mode

- Sub-array
- Sleep Bias
- Shut off

Shut-off Mode

- Sub-array

Voltage

- 0V
- 1.1V
- Virtual VSS

Leakage

- 2x lower leakage

Virtual VSS

- ~500mV
- 250mV

Copyright © 2006, Intel Corporation
Leakage Shut-off Infrared Images

16MB SKU
All 16MB in sleep mode

8MB SKU
8MB in sleep mode
8MB in shut-off mode

Shut-off feature reduces the leakage of the 8MB disabled sub-arrays by about 3W
Leakage Mitigation: Long-Le Transistors

- All transistors can be either nominal or long-Le
- Most library cells are available in both flavors
- Long-Le transistors are about 10% slower, but have 3x lower leakage
- All paths with timing slack use long-Le transistors
Long-Le Transistors Usage Map
Long-Le Transistors Summary

Percentage of Long-Le device width excluding RAM arrays:

Cores
- Nominal: 46%
- Long-Le: 54%

Uncore
- Nominal: 24%
- Long-Le: 76%

Moore’s Law will continue to double transistors every 2 years.

New Trend: To reduce sub-threshold leakage, most devices will be slower and only a handful of transistors will be fast.
Clock Domains

Legend:
- Core
- PLL
- Uncore
- I/O
Global Clock Skew Profile

Worst-case global skew is 11ps

More details on the clock distribution in paper 21.2
Voltage Domains

Legend:

- Blue: Core
- Red: PLL
- Green: Uncore
- Yellow: I/O
Cache sleep function enables separate voltage knob.
Power and Leakage Breakdown

Total Power Breakdown
- Cores: 74%
- L3 Cache: 12%
- Ctrl: 11%
- I/O: 3%

Leakage Breakdown
- Cores: 67%
- L3 Cache: 22%
- Ctrl: 9%
- I/O: 2%

Leakage accounts for about 30% of the total power
Symmetric I/O Pre-driver Circuit
C4 Bump Map

- 13164 C4 bumps
- Perfectly uniform bump pitch over the entire die (including I/O buffers) to improve epoxy underfill
Package Details

- 12 layers organic substrate (53.3 mm/side)
- 4-4-4 stacking
- Integrated heat spreader (38.5 mm/side)
- 604 total pins
- 366 signal I/Os
- System management components on package
Design for Test and Debug Features

Die-level DFT/DFM
- Parallel structural core test with XOR
- Scan and observability registers (scan-out)
- Three TAP controllers (core0, core1, uncore)
- Within-die process monitors
- On-die clock shrink

L3 cache DFT/DFM
- Built-in pattern generator (PBIST)
- Programmable weak-write test
- Low-yield analysis
- Stability test mode
- 32-entry cache line disable (Pellston)

FSB DFT/DFM
- I/O loopback
- I/O test generator
Thermal Sensors

Temperature Sensors

Thermal Diode
Target operating point 3.4GHz at 1.25V core voltage and 150W TDP envelope
Summary

• 65nm dual-core, four-thread Xeon® Processor with on-die 16MB L3 cache
 – Shared L3 cache ▶ best fit for server processors
 – Virtualization and Hyper-Threading Technology

• Leakage reduction circuit techniques
 – Massive Long-Le usage
 – N and P sleep transistors in L3 cache
 – L3 leakage shut-off mode ▶ saves power in lower cache size SKUs

• Multiple voltage and clock domains to reduce active power and leakage