Challenges to LV e-RAMs

RAM Cells
- Extend low-voltage limitation to sub-1 V
- Degraded S/N
- Increased leakage
- Reduce cell size

Peripheral Circuits
- Reduce leakage
 - Increased I_{STB} & I_{ACT}
- Reduce speed variation
 - Unreliable operations

1. It is governed by soft-error of cells, or S/N of cells and cell-relevant circuits.

2. As long as ECC is used, it is governed by S/N.

 ECC: Error Checking and Correcting circuit

3. S/N is determined by
 • Signal charge & signal voltage of cells,
 • **Flip-flop circuits** that DRAMs use for sense amps, while SRAMs use for cells themselves.
Comparisons of Flip-Flop Circuits

<table>
<thead>
<tr>
<th>Circuit</th>
<th>DRAM SA</th>
<th>SRAM Cell</th>
</tr>
</thead>
<tbody>
<tr>
<td>Standby</td>
<td>Off with all nodes at $V_{DD}/2$</td>
<td>On with static of all MOSTs</td>
</tr>
<tr>
<td>Active</td>
<td>Dynamic sensing of V_s (SN on, then SP on)</td>
<td>i by ratio of M_1 & M_5 Static of other MOSTs</td>
</tr>
<tr>
<td>Margin</td>
<td>Sensitive to V_T & ΔV_T of only two MOSTs, M_1 & M_2</td>
<td>Sensitive to V_T & ΔV_T of all MOSTs \rightarrow Narrow margin</td>
</tr>
</tbody>
</table>
Signal Charge Q_S of RAM Cells

$Q_S \equiv$ Soft-Error Q_{crt}. The larger the Q_S, the smaller the SER. Q_S decreases with device and voltage scaling.

DRAM

$Q_S = \frac{C_S V_{DD}}{2}$

C_S; Intentionally added, large, and needs to be gradually decreased with device scaling for maintaining large V_{SIG}.

SRAM

$Q_S = C_S V_{DD}$, $C_S = (C_1 + 2C_2)$

C_1, C_2; parasitic, small, and needs to be rapidly decreased with device scaling.

SER is always larger than for DRAM.
Signal Charge (Q_s) of RAM Cells

- Q_s reduced with capacity due to V_{dd} & device scaling
 Smaller Q_s of SRAM cell
- SER depends on Q_s
 DRAM; decreases with memory capacity due to large intentionally-added C_s & spatial scaling that reduces charge collection.
 SRAM; increases with memory capacity due to rapidly-decreasing parasitic C_s despite spatial scaling.

Solutions:
- Increase in C_s (SRAM cells)
- Uses of triple well, redundancy, ECC etc.

Y. Nakagome et al., IBM J. R&D, Vol.47, No.5/6, Sep./Nov. 2003
E. Ibe, The Svedberg Laboratory Workshop on Applied Physics, Uppsala, May 3, 2001
Error Checking & Correcting (ECC)

ECC word = 128 data bits + 8 check bits, FIT = 10^{-9}/ hour

SER without ECC (FIT)

SER with ECC (FIT)

- no correction during 10-year period
- periodic correction (1 ECC word/7.8 μs)
- one upset/1 k hours

K. Itoh, Hitachi

M. Horiguchi et al., IEEE J. SSC, 23, p. 27, Feb. 1988
Minimum V_{DD} (V_{min}) of RAMs

DRAM

Cell

$V_S > \delta V_T_i$

$V_S \equiv (V_{DD}/2) C_S/C_D$

$\therefore V_{min} = 2\delta V_T C_D/C_S$

$= 10\delta V_T$ ($C_D/C_S \approx 5$)

SRAM

Cell

$V_G = V_{DD}/2 - (V_{TO} + \delta V_T)$

$\therefore V_{min} = 2(V_{TO} + \delta V_T)$

If only cross-coupled nMOSTs determine the voltage margin during read,

$V_G = V_{DD} - V_{TO} - \delta V_T \geq 0$

$\therefore V_{min} = V_{TO} + \delta V_T$

δV_T: V_T-mismatch between paired MOSTs, V_{TO}: Average V_T

K. Itoh, Hitachi
Lowest Necessary \(V_{TO} \) for SA

- Signal \((-v_S)\) is amplified, so \(DL\) is discharged to \(A\). After that, \(\overline{DL}\) is gradually discharged by \(i_{\text{sub}}\) (M2).
- \(SP\) is on before \(\overline{DL}\) reaches \(C\).
- \(V_T (n\text{MOST}) \geq 0.2 \text{ V} @\text{extra., } 25^\circ\text{C}, \text{ if } t_S = 5 \text{ ns, } \Delta v = 50 \text{ mV}, C_D = 100 \text{ fF} @ 120^\circ\text{C}\)
Cross-coupled MOSTs need a high V_T to ensure a small retention current through reducing i_L.

V_{TO} is the average in a chip, because it is the average that determines retention current of the chip.

V_{TO} must be quite high and unscalable.

\[
V_{DD} - V_{TO} - \delta V_T
\]

\[
V_{DD} + \delta V_T
\]

1-Mb array retention current (A)

Extrapolated $V_T = V_T(nA/\mu m) + 0.3 V$

- $T_j = 125 \degree C$
- $L_g = 0.1 \mu m$
- $W(Q_T) = 0.20 \mu m$
- $W(Q_D) = 0.28 \mu m$
- $W(Q_L) = 0.18 \mu m$

- High speed (0.49)
- Low power (0.71)

1. V_T Variation (ΔV_T) as source of δV_T
 - **Extrinsic** ΔV_T due to implant non-uniformities & $\Delta (L, W)$
 - **Intrinsic** ΔV_T due to random microscopic fluctuations of dopant atoms in the channel area.

2. ΔV_T & δV_T increase with reducing MOST size even for a fixed generation.
 - $\sigma_{int} \propto \frac{1}{\sqrt{LW}}$
 - $\sigma(\delta V_T) \equiv \sqrt{2} \sigma_{int}$

3. ΔV_T & δV_T increase with device scaling.

ΔV_T in a chip has no room in time & area to be compensated for.

δV_T

M. Yamaoka et al., Symp. VLSI Circuits 2004
Larger δV_T of SRAM cell

<table>
<thead>
<tr>
<th>Circuit</th>
<th>DRAM SA</th>
<th>SRAM Cell</th>
</tr>
</thead>
<tbody>
<tr>
<td>DL</td>
<td>\overline{DL}</td>
<td>\overline{DL}</td>
</tr>
</tbody>
</table>

MOS Size
- **DRAM SA**: 10 - 20 F^2
- **SRAM Cell**: 1.8 - 2.8 F^2

Circuit Count in a chip
- **DRAM SA**: M (64 - 1024)
- **Relaxed SA layout**: 64-1024

δV_T
- **Small**
- **Large**

M: memory capacity
Maximum δV_T in a chip

r: repairable percentage

DRAM SA

$LW = 20F^2$, $t_{ox} = 1.9$ nm
64 cells/SA

SRAM Cell

$LW = 2F^2$, $t_{ox} = 1.9$ nm

F (nm)	Max. δV_T (mV)
0 | 0
90 | 100
65 | 80
45 | 60
32 | 40

$r = 0$

F (nm)	Max. δV_T (mV)
0 | 0
90 | 300
65 | 200
45 | 100
32 | 50

F (nm)	Max. δV_T (mV)
0 | 0
32 | 100
64 | 80
128 | 60
256 | 40

F (nm)	Max. δV_T (mV)
0 | 0
32 | 330
64 | 200
128 | 100
256 | 50
$V_{\text{min}} (r = 0.1\%)$

DRAM

- $LW = 20F^2$, $t_{\text{OX}} = 1.9\text{ nm}$
- 64 cells/SA, $V_{\text{DD}}/2$ DL pre.
- $V_{T0} = 0.2\text{ V}$

SRAM

- $LW = 2F^2$, $t_{\text{OX}} = 1.9\text{ nm}$
- $V_{T0} = 0.49\text{ V (HS)}, 0.71\text{ V (LP)}$

Actual V_{min} determined by all MOSTs in a cell.

Graphs

- **DRAM**: Graph showing V_{min} vs. F (nm) for different memory sizes (512Mb to 256Gb).
- **SRAM**: Graph showing V_{min} vs. F (nm) for different memory sizes (32Mb to 256Gb).
Approaches to LV SRAMs

1. Use ECC & Redundancy.
2. Minimize ΔV_T & δV_T.
 - Large cells with large MOSTs despite losing bit density
 - Symmetric cell layout
3. Stay at a high $V_{DD} \geq 1$ V due to its still large ΔV_T & δV_T of bulk CMOS.
 Even so, power-supply control cells needed for small subthreshold current.
4. Extend low-V_{DD} limitation to sub-1-V with FD-SOI.

M. Khellah, et al., ISSCC Dig., pp. 624-625, 2006

K. Itoh, Hitachi
Symmetric Layout for Small δV_T

Sources of extrinsic δV_T in the conventional cell:
- Pattern deformation after processing
- Mask misalignment
- Local size fluctuation

Solution: Lithographical symmetric cell ("Thin" Cell)
- Reduced δV_T by simple patterns suitable for OPC
- DLs shielded by power lines

Conv. (2 cells) LS cell (2 cells) Dotted area: after processing

poly gate diffused

OPC: optical proximity correction

Power-Supply Control Cells
for small subthreshold currents

Boosted Power Supply

\[V_{DD} + \delta V_D \]

- High \(V_T \) to reduce \(i_L \)
- \(\delta V_D \) to offset a high \(V_T \) & \(\delta V_T \)

Low leak, wide margin & low power with low- \(V_{DD} \) DL.
Unscalable MOSTs needed.

Source-Line Driving

\[V_{DD} \]

- Raised source during STB to reduce \(i_L \) with increased \(V_T \) of off-MOST

Reduced margin during STB by \(\delta V_S (>0.3 \text{ V}) \)
Source-Line Driving

Along with reduced DL voltage at active-standby transition

- **Sub-S backbias**
 - 90% reduction in subthreshold leakage

- **G-S backbias**
 - 100% reduction in subthreshold leakage

- **Electric-field relaxation**
 - 90% reduction in gate leakage & GI DL

```
<table>
<thead>
<tr>
<th></th>
<th>DL</th>
<th>VSS</th>
<th>DL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Standby</td>
<td>1.0 V</td>
<td>0.5 V</td>
<td>1.0 V</td>
</tr>
<tr>
<td>Active</td>
<td>1.5 V</td>
<td>0.0 V</td>
<td>1.5 V</td>
</tr>
</tbody>
</table>
```

K. Itoh, Hitachi

K. Osada et al. ISSCC2003 Dig. pp. 302-303
Measured Retention Current of Cell

25°C

<table>
<thead>
<tr>
<th></th>
<th>Sub. + GI DL</th>
<th>Tunnel</th>
<th>PMOS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Conv.</td>
<td>48.5</td>
<td>46.5</td>
<td></td>
</tr>
<tr>
<td>NMOS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PMOS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NMOS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Prop.</td>
<td>3</td>
<td>14</td>
<td></td>
</tr>
<tr>
<td>17 fA</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

\[V_T (\text{extrap.}) = 0.7 \text{ V(N)}, -1 \text{ V(P)} \]
\[t_{ox} (\text{electrical}) = 3.7 \text{ nm} \]

90°C

<table>
<thead>
<tr>
<th></th>
<th>Sub. + GI DL</th>
<th>Tunnel</th>
<th>PMOS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Conv.</td>
<td>1182</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NMOS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FMOS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Prop.</td>
<td>81</td>
<td></td>
<td></td>
</tr>
<tr>
<td>102 fA</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Subthreshold current sensitive to temp.

- Successful Application
 1.5-V 27-ns 6.42 x 8.76 mm² 16-Mb using ECC with 3.2-ns/9.7% speed/area penalties.

- Limitations and Challenges
 (1) Leakage still large 1.6 μA for 16 Mb despite high \(V_T \), thick \(t_{ox} \), and S-driving.
 (2) Reduced \(Q_S \) in standby mode
 The cell power-supply decreases by the raised source voltage.
 Further low-\(V_{DD} \) operation may be hazardous, even if ECC is used.
Source-Line Driving

to reduce leakage & its variation while retaining the data

\[V_{DD} \]

\[V_{\text{min}_\text{STB}} \]

\[\text{SRAM array} \]

\[V_{\text{REF}} = V_{DD} - V_{\text{min}_\text{STB}} \]

\[\Delta V_T \]

\[\delta V_S \]

\[V_{T0} \]

\[V_{T_{\text{max}_\text{STB}}} \]

\[V_{DD} \]

\[V_{\text{min}_\text{STB}} \]: Min. \(V_{DD} \) to retain the data of all cells in the array.

Lower \(V_{T0} \) → Larger \(\delta V_S \) → Higher \(V_{T0} \) with deeper body bias (\(\Delta V_T \)) → Lower \(i_L \)

K. Itoh, Hitachi

M. Khellah, et al., ISSCC Dig. pp. 624-625, 2006
Double-Gate FD-SOI

- Small ΔV_T & negligible δV_T (ultra-thin & lightly-doped channel)
- Adjustable $V_T \rightarrow$ multi- V_T
- Large V_T change (wide-range well-bias control)
- Reduced SER & small i_{pn}
- Dynamic V_T MOST (e.g., G-well connection)

K. Itoh, Hitachi

SRAM Cells with Dynamic-\(V_T\) MOSTs

to widen the voltage margin

\[\text{M}_1: \text{decreased } V_T\]
\[\text{M}_2: \text{increased } V_T\]
\[\text{M}_3: \text{increased } V_T\]
\[\text{M}_4: \text{decreased } V_T\]

Write margin improved with decreased \(V_T \) for driver/transfer MOSTs & increased \(V_T \) for load MOSTs.

M. Yamaoka et al., A-SSCC Dig. pp. 109-112, Nov. 2005

K. Itoh, Hitachi
Challenges to LV e-RAMs

RAM Cells
- Extend low-voltage limitation to sub-1 V
- Degraded S/N
- Increased leakage
- Reduce cell size

Peripheral Circuits
- Reduce leakage
 - Increased I_{STB} & I_{ACT}
- Reduce speed variation
 - Unreliable operations

K. Itoh, Hitachi

Leakage Currents of Periphery

Gate tunneling current (\(i_G\))
- Insensitive to \(V_G\) & temp.
- Sensitive to \(t_{ox}\)

1/ 10 \(i_G\)-reduction with \(t_{ox}\)-increment of only 2-3 Å for SiO₂, while the same reduction with \(V_G\)-decrement of as much as 0.5 V.
Such a large \(V_G\) control in low- \(V_{DD}\) region is risky.

→ Device designers are responsible for the reduction. (High- \(k\))

Subthreshold current (\(i_L\))
- Insensitive to device structures
- Sensitive to \(V_G\), \(V_T\) & temp that can be controlled by circuits.

1/ 10 \(i_L\)-reduction with \(V_T\)-increment, or \(V_G\)-decrement of only 100 mV.

→ Circuit designers are responsible for the reduction.
Subthreshold Current (i_L) of Periphery

Features of RAM Periphery

1. Input-Predictable Logic
 Designers can prepare the schemes in advance.

2. Slow Cycle ($t_{RC} = 25, 60$ ns)
 Each circuit is active for only a short period within “long” cycle, enabling additional time for i_L-control.

3. Iterative-Circuit Blocks
 Major i_L sources.
 All circuits in each block are inactive, except selected one.

4. Robust Circuits
 i_L-immune NAND dec.
 (w/o i_L-sensitive NOR dec.)

5. On-Chip Power Supplies
 V_{DH} & V_{BB} utilized for dual-static V_T.

K. Itoh, Hitachi

Y. Nakagome et al., IBM J. R&D, Vol.47, No.5/6, Sep./Nov. 2003
i_L-Increase in Periphery

- At present, V_T is still so high that i_L is small in active mode, though i_L dominates in standby mode.
- In the future, with further reducing V_T, i_L will dominate even in active mode. Leakage reduction for active mode is the key.

$$i_{ACT} = i_{AC} + i_{DC}$$
$$i_{AC} = \sum C_j V_{DD} f$$
$$i_{DC} = \sum i_{Lk} \infty \sum W_k 10^{-V_T/s}$$
$$V_T = aV_{DD}$$
$$k \gg j$$

Trends in DRAM Peripheral Current

<table>
<thead>
<tr>
<th>Capacity (bits)</th>
<th>V_{DD} (V)</th>
</tr>
</thead>
<tbody>
<tr>
<td>16M</td>
<td>0.53</td>
</tr>
<tr>
<td>64M</td>
<td>0.40</td>
</tr>
<tr>
<td>256M</td>
<td>0.32</td>
</tr>
<tr>
<td>1G</td>
<td>0.24</td>
</tr>
<tr>
<td>4G</td>
<td>0.19</td>
</tr>
<tr>
<td>16G</td>
<td>0.16</td>
</tr>
<tr>
<td>64G</td>
<td>0.13</td>
</tr>
</tbody>
</table>

Cycle time=180 ns
$T = 75^\circ C$, $S = 97$ mV/dec.
Basic Concept of i_L-Reduction

- Use high-V_T MOST achieved statically or dynamically with $V_{Th} = V_{Tl} + \Delta V_T$
- For static high-V_T ΔV_T by ion impla. or static-V_{BB} application.
- For dynamic high-V_T ΔV_T by dynamic back-biasing schemes G-S back-bias is best due to large $\Delta i_L / \Delta \delta$, applicable even to active mode.

Y. Nakagome et al., IBM J. R&D, Vol.47, No.5/6, Sep./Nov. 2003
Three Practical Reduction Circuits

Applicable even to Active Mode

<table>
<thead>
<tr>
<th>Switched-Source Imp. (G-S Self-Backbiasing)</th>
<th>![Switched-Source Imp. Diagram]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Power Switch utilizing internal power supply (G-S Offset Driving)</td>
<td>![Power Switch Diagram]</td>
</tr>
<tr>
<td>Dual-Static V_T utilizing internal power supply</td>
<td>![Dual-Static V_T Diagram]</td>
</tr>
</tbody>
</table>
SSI (G-S Self-Backbias)

for fast \(i_L\)-control of input predictable logic

No matter how large \(i_1\) is, it is confined to const. current \(i_2'\) with self-adjusting \(\delta\).

Stacking effects (\(\delta = 0.2\) V)
- G-S backbias of Q1 (1/100)
- Sub-S backbias of Q1 (1/1.5)
- DI BL effect of Q2 (1/2)

Applicable even to active mode
- Fast \(i_L\)-control capability with small \(\delta\) & \(C_L\) and self-reduction
- Small area penalty if applied to iterative circuit blocks
- Capability of confining to min. active circuitry

\[i_1' = i_2'\]

\[\therefore \delta = (S/\ln10) \ln(W_1/W_2)\]

Reduction Ratio \(\gamma = i_1'/i_1 = 10^{-\delta/S} = W_2/W_1\)
- Smaller \(i_L = i_2'\) & larger \(\delta\) with smaller \(W_2\)
- \(\gamma = 1\) (no reduction) for \(W_2 = W_1\)

Other secondary effects reduce \(i_L\).

(Sub-S backbias & DI BL)

Small Area Penalty with SSI Sharing

Inverter Chain

- For 0-V input, i_L flows from an n-MOST in each 0-V input inverter, and accumulates into SSI.
- SSI confines to its constant current $\left(= i_0 W_2 10^{-V\tau0/S} \right)$.
- $W_2 \equiv w_1 \equiv \ldots \equiv w_n$ without speed penalty because each inverter switches at different timing.
- Area penalty is negligible with increasing the number of inverters because $W_2 \ll \Sigma w_i$.

Such is the case for p-MOST SSI.

K. Itoh, Hitachi

During non-selected periods \(i_L (= i') \) flows from each circuit, and accumulates into \(SSI \).

\(SSI \) confines to its constant current \((= i_0 W_2 10^{-\nu t/S}) \).

\(W_2 \approx W \) without speed penalty because only one MOST is activated with \(SSI \) on.

Area penalty is negligible with \(n \gg 1 \) because \(W_2 \ll nw \).
Confining to Minimum Active Circuitry

Partial activation of multi-divided block

Block (selected)

\[i = i_0 \cdot W \cdot 10^{-V_{th} / S} \]

Subblock (selected)

\[i_2' = i_0 \cdot W_2 \cdot 10^{-V_{th} / S} \equiv i, \quad W_2 \equiv w \]
Low- V_T switch (Q) shuts off the supply of low- V_T core during standby. A raised V_{DH} needed to cut off Q with G-S backbias.

Problems:

1. If V_{DH} generated by charge pump,
 - Unregulated floating V_{DH}
 For well-regulated V_{DH},
 $C_2 V_{DH} f < C_P V_{DD} f_P$, $C_1 \gg C_P$, $C_1 \gg C_2$, level monitor.
 - Increased pump power
 For low pump power with keeping the V_{DH} level,
 $C_P V_{DD} f_P$ & $C_2 V_{DH} f$ reduced.
 - Smaller C_2 & slower f

2. Area penalty by large Q
3. Slow recovery of internal power node (←)
Power Switch with Level Holder

Applicable even to active mode, if the switch itself operates fast enough. After evaluating the input, the output level continues to be held by high-V_T holder without leakage. Otherwise

- Floating output discharges, causing a large i_L at pMOST in the succeeding circuit, in which the switch is still on.
- Unnecessary discharging prevents the output from quick recovery.
Dual Static V_T

Useful for active & standby modes

Selective use of a high V_T to
- Off-MOSTs during standby
- Non-critical path, while using low V_T to critical path.

 \Rightarrow Low i_L & high speed chip

The reduction is not remarkable because V_T-difference must be small.

A large V_T-difference may cause a racing problem:
 a pulse-timing imbalance between V_{TI}- & V_{TH}-circuits.

i_L reduced to $1/5$ for uniform use of V_{TI} with assumptions:

W_{total} (critical path) = 10% of W_{total} (chip),

$V_{TI} = 0.21$ V, $V_{TH} = 0.31$ V, $S = 0.1$ V/dec.
256-Mb DRAM (Standby)

K. Itoh, Hitachi

M. Hasegawa et al., ISSCC Dig. pp. 80-81, 1998.
Standby Current Reduction (256 Mb)

1.28 mA

Conv. Peri. Drivers Y-dec Array control

SSI

Dual static V_T

$T = 75^\circ C$

$S = 109 \text{ mV/dec. (PMOST)}$

89 mV/dec. (NMOST)

$V_T = 0.03 \text{ V (PMOST, 0.7 nA/\mu m)}$

-0.02 V (NMOST, 0.7 nA/\mu m)

$V_{DD} = 2.0 \text{ V, } V_{DH} = 3.8 \text{ V, } V_{BB} = -1 \text{ V}$

Proposed

Power down self-refresh

0.21 mA

40 μA with dual V_T

K. Itoh, Hitachi

M. Hasegawa et al., ISSCC Dig. pp. 80-81, 1998.
1-V 16-Gb DRAM

Active Current Reduction

<table>
<thead>
<tr>
<th>Conv.</th>
<th>AC 75</th>
<th>DC</th>
<th>(subthreshold)</th>
<th>1105</th>
</tr>
</thead>
<tbody>
<tr>
<td>word drivers</td>
<td>695</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>decoder</td>
<td>209</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SA drv.</td>
<td>69</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>others</td>
<td>132</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Proposed</th>
<th>75 41</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>SSI</td>
<td>116</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>power switch</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>with level</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>holder</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- $V_T = -0.12 \text{ V (2nA/ \mu m)}$, $S = 97 \text{ mV/dec.}$, $75^\circ C$
- $V_{DH} = 1.75 \text{ V}$, $V_{DD} = 1 \text{ V}$, $t_{RC} = 180 \text{ ns}$

K. Itoh, Hitachi

T. Sakata et al., 1993 Symp. VLSI Circuits.
0.6-V 16-Mb e-DRAM

Y Circuits

- Some int. voltages are controlled to compensate for $\Delta (i_L, \tau)$ caused by $\Delta (V_T, T, V_{DD})$.
- In sleep mode, 0.3-V G-S b.b. reduces SA’s i_L.

![Diagram of Y Circuits with voltage levels and circuit components](image)

K. Itoh, Hitachi

0.6-V 16-Mb e-DRAM

X Circuits (Active)

K. Itoh, Hitachi

K. Hardee et al, ISSCC2004 Dig. p. 200
0.6-V 16-Mb e-DRAM

X Circuits (Sleep)

K. Hardee et. al, ISSCC2004 Dig. p. 200

K. Itoh, Hitachi
1.2-V 1-Mb e-SRAM

Multi-Bank Architecture

Active Mode
4-bank arch. with one-bank activation confines active circuitry to 1/4, and reduces
- AC power of cont. signals
- i_L in inactive banks if SSI is applied to WD & cells.

SSI_1: Small δ_1 & $C_L \rightarrow 0.3$ ns
SSI_2: Drawbacks;
 Large δ_2 (0.4 V) & $C_L \rightarrow 3$ ns
 Cell-supply reduced by δ_2

Sleep Mode
Periphery off with power switch off $\rightarrow 3$ns

M. Yamaoka et. al., ISSCC2004 Dig. p. 494

K. Itoh, Hitachi
Leakage of 1-Mb e-SRAM (Active)

1.2 V, room temp.

- Conv. (300 MHz): 460 μA (1)
- SSI_1 (300 MHz): 350 μA (0.75)
- SSI_1 & SSI_2: 150 μA (0.33)

$V_T = 0.4/0.3$ V

K. Itoh, Hitachi
M. Yamaoka et al., ISSCC2004 Dig. p. 494
Challenges to LV e-RAMs

RAM Cells
- Extend low-voltage limitation to sub-1 V
- Degraded S/N
- Increased leakage
- Reduce cell size

Peripheral Circuits
- Reduce leakage
 - Increased I_{STB} & I_{ACT}
- Reduce speed variation
 - Unreliable operations

Ever-increasing ΔV_T, and rapidly-lowering gate-over drive with device scaling.

They enhance speed variation of periphery $\Delta \tau / \tau \propto \Delta V_T / (V_{DD} - V_T)$

Solutions

- For inter-die $\Delta \tau$, Compensation with V_{BB} generator. e.g., Speed improvement by 63%
- For intra-die $\Delta \tau$, FD-SOI
K. Itoh, Hitachi

\(I_{DS} (M1) \) is a good indicator of \(i_L \) & speed. \(V_{GS} (M1) = \frac{V_{DD}}{2} \approx V_T \). \(V_D \) is compared to \(\frac{V_{DD}}{2} + \Delta \) and \(\frac{V_{DD}}{2} - \Delta \) to determine if \(V_{NB} \) should be increased or decreased.

For low \(V_T \) (fast process or high \(T_j \))
\[V_D < \frac{V_{DD}}{2} - \Delta. \]
The lower OP activates PUMP, so \(V_{NB} \) starts to decrease and \(V_T \) is increased to compensate.

For high \(V_T \) (slow process or low \(T_j \))
\[V_D > \frac{V_{DD}}{2} + \Delta. \]
The upper OP discharges M2-gate for driving the body, allowing \(V_T \) to be reduced and compensated for.

Such is the case for \(V_{DD} \).

K. Hardee et. al, ISSCC2004 Dig. p. 200
Intra-Die Speed Variation

Low-Power CMOS LSIs

\[\frac{\tau(V_{T0}+\Delta V_T)}{\tau(V_{T0})} \]

- \(L/W = 1F/6F \)
- \(V_{T0} = 0.3 \text{ V}, \Delta V_T = \pm 3\sigma(V_T) \)
- \(\tau(V_T) \propto V_{DD}/(V_{DD}-V_T)^{1.25} \)

<table>
<thead>
<tr>
<th>(F (\text{nm}))</th>
<th>90</th>
<th>65</th>
<th>45</th>
<th>32</th>
</tr>
</thead>
<tbody>
<tr>
<td>(V_{DD} (V)) (ITRS'03)</td>
<td>0.9</td>
<td>0.8</td>
<td>0.7</td>
<td>0.6</td>
</tr>
<tr>
<td>(\sigma(V_T)) bulk (ratio)</td>
<td>1</td>
<td>1.29</td>
<td>1.89</td>
<td>2.51</td>
</tr>
<tr>
<td>(\sigma(V_T)) SOI (ratio)</td>
<td>-</td>
<td>0.23</td>
<td>0.38</td>
<td>0.50</td>
</tr>
</tbody>
</table>

K. Itoh, Hitachi
Challenges to LV e-RAMs

RAM Cells
- Extend low-voltage limitation to sub-1 V
- Degraded S/N
- Increased leakage
- Reduce cell size

Peripheral Circuits
- Reduce leakage
 - Increased $I_{STB} \& I_{ACT}$
- Reduce speed variation
 - Unreliable operations

RAM Cells (DRAM)

Short DL allows a small C_S & simple C_S-structure with small C_D. Planar-C_S cell might replace e-SRAM cells. $v_{\text{sig}} \approx \frac{C_s}{C_d} \cdot \frac{V_{\text{DD}}}{2}$.

In addition, short DL enables low-V_{DD} fast operation.

<table>
<thead>
<tr>
<th>Proposed (ISSCC2005)</th>
<th>Conventional</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Cells/ DL</th>
<th>32</th>
<th>128</th>
</tr>
</thead>
<tbody>
<tr>
<td>C_S</td>
<td>5 fF (Ta$_2$O$_5$; MIM)</td>
<td>\geq 15 fF (MIS)</td>
</tr>
<tr>
<td>Additional wire</td>
<td>No</td>
<td>local wire (M0)</td>
</tr>
<tr>
<td>Thermal budget</td>
<td>no impact on logic</td>
<td>intolerable impact</td>
</tr>
<tr>
<td>Cell RC delay</td>
<td>W storage cont.</td>
<td></td>
</tr>
<tr>
<td>Co-salicided S/ D</td>
<td>Co-salicided S/ T</td>
<td>Non-metalized cell</td>
</tr>
<tr>
<td>Cell contact R</td>
<td>10 Ω</td>
<td>10 kΩ</td>
</tr>
</tbody>
</table>

K. Itoh, Hitachi

M. Iida et al., ISSCC2005 Dig. p. 460, M. Shirahata et al., ISSCC2005 Dig. p. 462
Cell Size Reduction (6-T SRAM Cell)

Stacked TFT SRAM Cells

- **Single-crystal TFT**
 The highest density cell \((25F^2)\) comparable to DRAM cells.
 1.8-V 61.1-mm\(^2\) 144-MHz 256-Mb SRAM.

- **Drawbacks as e-SRAMs**
 Sophisticated process, High-\(V_{DD}\) operation due to TFT PMOST of \(S = 140\) mV/dec., \(I_{DS} = 2/3\) of the bulk.

Load p-TFTs & transfer n-TFTs double-stacked over bulk driver n-MOSTs in different levels of layers.

K. Itoh, Hitachi

Cell-Size Comparisons

SAC for stand-alone DRAM
No SAC for others
Future Prospects for RAMs

6-T SRAM Cell: Due to high necessary V_T & large ΔV_T
• Not suitable for sub-1-V V_{DD}
• Continue to be used for a high V_{DD} (≥ 1 V).
 Challenge; Small-ΔV_T MOSTs. TFT cells for stand-alone SRAMs.

1-T DRAM Cell: • Suitable even for sub-1-V V_{DD}.
 Challenges; Planar capacitors, Small-ΔV_T MOSTs.

Peripheral Circuits:
• Subthreshold-currents will be reduced sufficiently with existing techniques even for active mode.
• Speed variations will continue to be serious.
 Challenges; V_{BB} control, Small-ΔV_T MOSTs.

Two Approaches:
 High- V_{DD} bulk-CMOS for low-cost RAMs,
 Low- V_{DD} FD-SOI for high-speed low-power RAMs.
Conclusion

1. I discussed challenges and trends in LV RAMs.
2. I reviewed state-of-the-art LV RAM circuits.
3. I gave prospects of RAMs with emphasis on further needs for
 • Ultra-low voltage RAM cells,
 • Advanced devices & circuits to reduce speed variations.