Resonant Clock Design for a Power-efficient, High-volume x86-64 Microprocessor

Visvesh Sathe¹, Srikanth Arekapudi¹, Alexander Ishii², Charles Ouyang¹, Marios Papaefthymiou^{2,3}, Samuel Naffziger¹

> ¹Advanced Micro Devices, Inc. ²Cyclos Semiconductor, Inc. ³The University of Michigan, Ann Arbor

Outline

- Piledriver (PD) overview
- Resonant clocking
- Clock driver design
- Inductor design
- Other resonant clock components
- Putting it all together
- Measurement results
- Conclusion

Piledriver

- Extension of Bulldozer Architecture 2-core module:
 - Shared I-fetch, Decode, Br. Predict, FP, L2, Cache unit
 - Per-core Integer schedule/execute, Load/Store

- 32nm CMOS
- HKMG, SOI
- 11 metal layers
- 33.3 mm² w/L2
- 216M transistors
- 0.8-1.3 V

The Piledriver Global Clock

Significant global clock loading

7ps clock grid skew target across
 21mm² core area

Constrained clock latency from

grid to timing elements

 24% of average application power in global clock

Basic Resonant Clocking Operation

- Rely on efficient LC resonance between spiral inductors and grid capacitance near resonant frequency
- Efficient operation around natural frequency
- Driving clock at much lower frequencies
 - → Reduced efficiency
 - → Warped clock waveform

Resonant Clocking: Mutual Inductance

- Significant mutual inductance interaction from
 - Signal nets under and around inductor windings.
 - Power and ground nets serving circuits under inductor
- Mutual inductance causes
 - $-\downarrow$ L, \downarrow Q, \uparrow Clock power
- Maintaining keep-out regions is prohibitive (~5% area penalty)

Resonant Clocking on PileDriver

- Dual mode clock system with Mode switch (MSw)
 - resonant clocking (rclk) when MSw is closed
 - conventional clocking (cclk) when MSw is open
- C_T ≈ 6xC_{clk} to serve as effective AC ground
- Throttle Switch (TSw) to address transient voltage spikes

Piledriver Resonant Clocking

PLL Clock

- 92 distributed inductors
- MSw, TankCap, TSw inductors contained in HCK Tree Macros
- Conventional L2CLK, NBCLK

Basic Rclk Operation (1/6)

- Rclk operation can be partitioned into 6 phases
- Voltage across C_{tank} ~ Vdd/2
- Nmos conducting, Pmos off
- R-L Current buildup through the Nmos
- IR drop across Nmos and grid resistance \rightarrow clock voltage \uparrow

Basic Rclk Operation (2/6)

- Both, Nmos and Pmos are off
- LC oscillation with initial inductor current to charge clk
- Clk voltage transition a function of L,C and initial current.

Basic Rclk Operation (3/6)

- Pmos on, Nmos off.
- Both LC and pull-up mechanisms in effect

Basic Rclk Operation (4/6)

- Pmos on, Nmos off
- RL current buildup through the Pmos
- IR drop across Pmos and grid \rightarrow clock voltage increase

Basic Rclk Operation (5/6)

- Both driver devices are off
- LC oscillation with initial inductor current to discharge clk
- Clk voltage transition a function of L,C and initial current

Basic Rclk Operation (6/6)

- Nmos on, Pmos off
- Both LC and pull-down mechanisms in effect

Cclk and Rclk Waveforms

- Reduced driver strength required for rclk
- Lower rclk slew → insertion delay increase (phase offset)
- Delayed onset of driver devices

 rclk_pulse phase offset

Clock Driver Design

- Clock driver palette with 24 drivers
 - Up to 4 blocks. Each block can contain up to 6 subBlocks
 - Effective granularity and efficiency tradeoff
- Run-time programmable drive strength modulation support
 - Each subBlock consists of 3 banks (2:3:2 ratio)
 - drvEn[2:0] signals allow for n/7 (n=2,3,4,5,7) drive modulation

Driver Design

Split buffer design

- Skewed pre-drivers for reduced crossover current
- Allows insertion delay management of rclk w.r.t. cclk, NB and L2 clocks

Driver Design: Pulse Mode

- Subtractive pulse-generator scheme
 - Delay chain used to delay asserting edges of nmos and pmos devices
 - De-asserting transitions not delayed
 - Ontime is a function of input duty cycle and delay amount
- Benefits over traditional pulse generation
 - Lower variation (smaller delay)
 - Support for Off P-state operation
 - Allows PLL duty cycle tuning

"dead-time"

• Clk macro, bump pitch constrain inductor size

Inductor Design (cont'd)

- Metal sharing with existing power → cut-aways
- Center power straps, HCK tree through inductor for mutual inductance cancellation

Inductor Design (cont'd)

- Custom "loopless" power under inductor to avoid Q degradation due to power grid eddys
- TankCap built in Si, metal to meet capacitance, ESR target

Other rclk Components: Mode Switch

- rclk resistance
 ← cclk loading tradeoff
- Mode switch offers fet resistance
 - Voltage dependent
 - Lower overdrive → Negative
 Temperature Coefficient
- cclk → rclk mode causes excessive clock grid loading
 - V(n1) not always well defined in cclk mode
 - Results in reduced clock amplitude and degraded slew → timing impact

Mode Switch (Contd.)

- Staging techniques used
 - Turn on Mode Switch in stages (like in power gating)
 - "Warm" up n0 before making a low resistance connection to grid.

Voltage Overshoot on Mode Switch

- rclk \rightarrow cclk transition can result in voltage overshoot on n1.
- Oxide stress poses a reliability issue.

Throttle Switch

- Throttle switch connected across inductor
 - Low resistance help damp overshoot
 - Turns on as ModeSwitch turns off

Other rclk Components: C_{Tank}

- C_{Tank} acts as an A.C ground connection.
- ↑C, ↓ESR to serve as a low loss ground connections
 - Low resistance power, ground, inductor connection
 - High bandwidth decap
- Implemented underneath inductor using Si and metal
- Distributed C_{Tank} connection using inductor winding for low resistance contact
- Metal cap built to meet C, ESR requirements

Clock Tuning

- 7ps grid skew target across
 22mm²
- Heavy clock grid loading requires effective strategies for:
 - Grid wire tuning
 - Clock driver tuning
 - Inductor tuning
- Elmore delay-aware local wire routing solution.
- Clock wire tuning algorithm meets target skew with
 - Inductance-aware clock spine geometries
 - Minimal clock spine capacitance

Clock Tuning (contd.)

- Global clock load varies significantly across core
- Effective driver and Inductor allocation key to maintaining clock skew
 - Driver palette size : 24
 - Inductor palette size : 5 (0.5—1.3nH range)
- Iterative Linear Programming-based algorithm for driver and inductor allocation
 - 1. Start with initial driver/inductor assignment
 - 2. Linearize problem Obtain sensitivity matrix for each driver/inductor location
 - 3. Setup L.P, solve for optimal assignment
 - 4. Run full chip clock skew analysis
 - 5. If skew budget not met, goto 2

Clock Tuning (contd)

- Clock skew control for cclk and rclk
 - Wire tuning algorithm to constrain clock latency
 - Iterative LP formulation for optimal driver and inductor assignment
 - Interleaved driver and inductor placement
 - Additional rclk skew impact <1ps

Putting It All Together

- Clock configuration programming during P-State transitions
- Frequency-indexed fuse table to access configuration bits
 - Mode selection (rclk,cclk)
 - Driver strength
 - Pulse_en, Pulse duty cycle
- Source-synchronous transfer
- Cclk mode during P-State transition

Measured Efficiency (%) vs. Frequency

- Efficiency: Percentage clock power savings over cclk
- rclk_square_x → Clock driver strength modulation of x/7

f_{max} Measurements

- Frequency-limiting patterns in HST setup
- 0 MHz median, 5 MHz mean (0.13%) frequency overhead in rclk
 - rclk ⇔ cclk phase offset
 - Low-slew rclk waveforms $\rightarrow \uparrow$ variation in timing elements

Rclk Measurement Summary

- Successfully ran SST (System Stress Test) over 2 weeks
- Latest Fmax impact data on a larger set of parts shows an Fmax overhead of ~0.2%
- Up to 34% energy efficiency achieved in the global clock using Pulse Mode
 - Not production ready due to excessive Fmax impact driven by phase offset to NB and L2 clock interface
 - Phase offset issue resolved in current design
- Temperature effect: Overall efficiency degradation with T
 - Positive temperature coefficient due to metal resistance
 - Negative temperature coefficient due to low-overdrive MSw
- Traces with higher activity provide additional efficiency
 - Increased clock load dominates additional crossover current.

Conclusion

- Dual-mode resonant clock design in 32nm SOI
 - Conventional mode : < 2.9GHz</p>
 - Resonant mode : > 2.9GHz to f_{max}
- Power savings
 - Clock power: ↓ 25%
 - Average application power (core): ↓ 4.5%
 - Idle power (core): ↓ 10%
- Built upon existing clock infrastructure
- No CMOS technology modification

Acknowledgments

AMD

- Manivannan Bhoopathy
- Kyle Viau
- Alan Arakawa
- Tom Meneghini
- Denny Renfrow
- Vasant Palisetti
- Kevin Hurd
- David Johnson
- Rohit Kumar¹
- Alvin Loke
- Bill McGee

¹ Currently with Apple Computers

Cyclos Semiconductor

- Fred Brauchler
- Joohee Kim
- Jerry Kao