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Piledriver

Extension of Bulldozer Architecture - 2-core module:
« Shared I-fetch, Decode, Br. Predict, FP, L2, Cache unit
* Per-core Integer schedule/execute, Load/Store

32nm CMOS
HKMG, SOI

11 metal layers
33.3 mm?2 w/L2
216M transistors
0.8-1.3V




The Piledriver Global Clock

« Significant global clock loading

— 7ps clock grid skew target across
21mm? core area

— Constrained clock latency from PLL Clock
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Basic Resonant Clocking Operation
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* Rely on efficient LC resonance between spiral inductors
and grid capacitance near resonant frequency

 Efficient operation around natural frequency
* Driving clock at much lower frequencies

- Reduced efficiency

- Warped clock waveform



Resonant Clocking: Mutual Inductance
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« Significant mutual inductance interaction from
— Signal nets under and around inductor windings.
— Power and ground nets serving circuits under inductor
« Mutual inductance causes
—Jd L, 4 Q, T Clock power
* Maintaining keep-out regions is prohibitive (~5% area penalty)



Resonant Clocking on PileDriver
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Dual mode clock system with Mode switch (MSw)

— resonant clocking (rclk) when MSw is closed

— conventional clocking (cclk) when MSw is open

C; = 6xC,, to serve as effective AC ground

Throttle Switch (TSw) to address transient voltage spikes



Piledriver Resonant Clocking

PLL Ciock 8

!_.

. == e R : ‘
| Illﬂ"""""ﬁa_"__ HCI( Tree 4 “'l"ﬁﬂl!."'l

Clock Mesh | |||||||l 1,

Load \{ “ ’ : ' |||| BEEE of &
lrrannnnumema HCK Tree 3 liiilillam-ug

5. E;:;— """ :.3 ":’EIEZE i

p-uﬁiiaw HCK Tree 2 gessagssagmem

. ” Iylhr: ,”,‘.” l} i ﬂ\sr'? ' t!ﬂi I‘lﬂgﬁa i

'Jiil :
ol e W

miuﬁm HCK Tree 1 t'n'nnummm! |

- |1".
SIRP AL e 3 ";.. 2 M’ﬁiﬁﬁﬁ i
e aHI‘ [. I]I" .::. Ei (’-'1

3 A S ] HCKTreeO :unn |

O |
Driver-MSw ¥ ;}5 : - . ,92 distributed inductors

Shorting Bar 7

/ MSw, TankCap, TSw
N : : /" inductors contained in HCK
/
Clock Driver Tree Macros

* Conventional L2CLK, NBCLK




Basic Rclk Operation (1/6)
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* Rclk operation can be partitioned into 6 phases

* Voltage across C,,, ~Vdd/2

 Nmos conducting, Pmos off

e R-L Current buildup through the Nmos

« IR drop across Nmos and grid resistance = clock voltage T




Basic Rclk Operation (2/6)
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 Both, Nmos and Pmos are off
« LC oscillation with initial inductor current to charge clk
« Clk voltage transition a function of L,C and initial current.



Basic Rclk Operation (3/6)
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 Pmos on, Nmos off.
« Both LC and pull-up mechanisms in effect



Basic Rclk Operation (4/6)
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 Pmos on, Nmos off
* RL current buildup through the Pmos
* IR drop across Pmos and grid - clock voltage increase



Basic Rclk Operation (5/6)
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« Both driver devices are off
« LC oscillation with initial inductor current to discharge clk
« Clk voltage transition a function of L,C and initial current




Basic Rclk Operation (6/6)
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« Nmos on, Pmos off
« Both LC and pull-down mechanisms in effect
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Cclk and Rclk Waveforms

« Reduced driver strength required for rclk
* Lower rclk slew - insertion delay increase (phase offset)
* Delayed onset of driver devices - rclk_pulse phase offset
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Clock Driver Design
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* Clock driver palette with 24 drivers

— Up to 4 blocks. Each block can contain up to 6 subBlocks
— Effective granularity and efficiency tradeoff
* Run-time programmable drive strength modulation support
— Each subBlock consists of 3 banks (2:3:2 ratio)
— drvEn[2:0] signals allow for n/7 (n=2,3,4,5,7) drive modulation



Driver Design
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« Split buffer design
— Skewed pre-drivers for reduced crossover current

— Allows insertion delay management of rclk w.r.t. cclk, NB and L2
clocks



» Subtractive pulse-generator
scheme

— Delay chain used to delay
asserting edges of nmos and
pmos devices

— De-asserting transitions not

Driver Design: Pulse Mode

delayed

— Ontime is a function of input
duty cycle and delay amount
Benefits over traditional
pulse generation

— Lower variation (smaller delay)

— Support for Off P-state operation
— Allows PLL duty cycle tuning
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Inductor Design

HCK Tree (Preclk)

M11 Inductor

Distribution

M11
Power Straps

Inductor Winding

« Clk macro, bump pitch constrain inductor size



Inductor Design (cont’d)

HCK Tree (Preclk)

o M1l Power
Distribution

* Metal sharing with existing power - cut-aways

» Center power straps, HCK tree through inductor
for mutual inductance cancellation



Inductor Design (cont’d)

Distributed 7 Custom “Loopless”
Indu ctor TankCa p/, Powar Crid

Tank Cap over
Custom Grid

« Custom “loopless” power under inductor to avoid Q
degradation due to power grid eddys

« TankCap built in Si, metal to meet capacitance, ESR target



Other rclk Components: Mode Switch

* rclk resistance < cclk
loading tradeoff

 Mode switch offers fet
resistance
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« cclk — rclk mode causes
excessive clock grid loading

o '_ — V(n1) not always well

reduction

defined in cclk mode

— Results in reduced clock
amplitude and degraded
slew — timing impact




Mode Switch (Contd.)

« Staging techniques used
— Turn on Mode Switch in stages (like in power gating)
— “Warm” up nO before making a low resistance connection to grid.



Voltage Overshoot onModeSW|tch

« rclk — cclk transition can result in voltage overshoot on n1.
« Oxide stress poses a reliability issue.




Throttle Switch

 Throttle switch m——————————==
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Other rclk Components: C,.

MSw_en

b
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/ps grid skew target across

22mm?

Heavy clock grid loading requires
effective strategies for:

— Grid wire tuning
— Clock driver tuning
— Inductor tuning

Elmore delay-aware local wire | =a—s . iss
routing solution. =

Clock wire tuning algorithm
meets target skew with =

— Inductance-aware clock spine |-

geometries
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Clock Tuning (contd.)

Global clock load varies significantly across core

Effective driver and Inductor allocation key to maintaining
clock skew

— Driver palette size : 24
— Inductor palette size : 5 (0.5—1.3nH range)

Iterative Linear Programming-based algorithm for driver and
inductor allocation

1.
2.

Start with initial driver/inductor assignment

Linearize problem - Obtain sensitivity matrix for each
driver/inductor location

Setup L.P, solve for optimal assignment
Run full chip clock skew analysis
If skew budget not met, goto 2



Clock Tuning (contd)

« Clock skew control for cclk and rclk
— Wire tuning algorithm to constrain clock latency

— lterative LP formulation for optimal driver and inductor
assignment

— Interleaved driver and inductor placement
— Additional rclk skew impact <1ps

T T Clock Grid Skew Histogram

Rclk Skew = 7.2ps
Cclk Skew = 6.5ps

Global Clock
Spine

: 0
. . Driver-MSw . skew (PS)
* Shorting Bar




Putting It All Together

 Clock configuration programming

{Z
{.

during P-State transitions

* Frequency-indexed fuse table
to access configuration bits
— Mode selection (rclk,cclk)
— Driver strength
— Pulse_en, Pulse duty cycle
 Source-synchronous transfer

« Cclk mode during P-State
transition
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Measured Efficiency (%) vs. Frequency
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« Efficiency : Percentage clock power savings over cclk
* rclk_square_x > Clock driver strength modulation of x/7




f ... Measurements
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* Frequency-limiting patterns in HST setup

* 0 MHz median, 5 MHz mean (0.13%) frequency overhead in rclk
— rclk < cclk phase offset
— Low-slew rclk waveforms > T variation in timing elements



Rclk Measurement Summary

Successfully ran SST (System Stress Test) over 2 weeks

Latest Fmax impact data on a larger set of parts shows an Fmax
overhead of ~0.2%

Up to 34% energy efficiency achieved in the global clock using
Pulse Mode

— Not production ready due to excessive Fmax impact driven by
phase offset to NB and L2 clock interface

— Phase offset issue resolved in current design
Temperature effect : Overall efficiency degradation with T

— Positive temperature coefficient due to metal resistance

— Negative temperature coefficient due to low-overdrive MSw
Traces with higher activity provide additional efficiency

— Increased clock load dominates additional crossover current.



Conclusion

Dual-mode resonant clock design in 32nm SOI
— Conventional mode : < 2.9GHz
— Resonant mode : > 2.9GHz to f
Power savings

— Clock power: { 25%

— Average application power (core): 4 4.5%
— Idle power (core): 1 10%

Built upon existing clock infrastructure

No CMOS technology modification

max
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