Architecture Issues for Integrated Space and Terrestrial Networks

Vincent W. S. Chan

Laboratory for Information and Decision Systems
Department of Electrical Engineering and Computer Science
Department of Aeronautics and Astronautics
Massachusetts Institute of Technology
Robust Dynamic Tactical Networks
support 10-500k communicating devices in theater

- Beyond traditional "tactical" which is voice/human user oriented
- High reliability delivery
- Beyond traditional ad-hoc networks
Network topology

Space backbone (Lasercom)

Terrestrial backbone (fiber)

Airborne

Ground radio

Access network

Space user
Network properties

- Ultra-long propagation delays
- Software delays
- Large delay-bandwidth product
 - Many packets in flight
- Time-varying channel
 - Capacity
 - Symbol-size
 - Code-rates
 - Fading
 - Outage
 - Block erasures
- Dynamic connectivity (unpredictable)
 - Multiple connectivity
 - Changing channel quality
- Pol., linear and nonlinear distortions
Dynamic 4-D Network

- **Dynamic rate allocation**
- **Agile beams**
- **MAC**

- **Dynamic routing**: deterministic & stochastic
- **Heterogeneous network**: Satcom, fiber, wireless
- **Differentiated services**: cost-based, time-deadline, ...

- **Joint application-network coding**
- **Policy networking**
Critical architecture issues

1. **Physical topology**

2. **Modulation and coding**
 a. Lasercom
 b. RF trunk
 c. RF AJ access
 d. RF ground radio

3. **Media access control protocol (MAC)**
 RF, Lasercom

4. **Network routing hardware and protocol**

5. **Transport Layer protocol**

6. **Network management and control**

7. **Source coding** (*interactions with others*)

8. **Internetworking**

9. **Security** (*not just crypto*)
S/C node: Processing + MAC + switching + routing
$	extbf{Constellation connection topology}$

- Uniform & hub traffic
- % pass-thru traffic increases with N
- Degree 3, 4 seems best
- Mesh is better: asymmetric traffic will have more dramatic effects

Ring (U)

Circulant (U)

Circulant (H+u)

- One architecture does not fit both traffic patterns
Media Access Control (MAC) Protocol

- Efficient use of satellite resources (e.g. receivers, xmitters)
- MAC protocol critical for efficient performance
 - Random access?
 - Scheduling for larger transactions
 - Access delay of several roundtrips will have significant interactions with TCP
 - Open air interface security
RF space-ground links

- Highly variable channel
 - Rain attenuation
 - Turbulence scintillation

- Adaptive modulation and coding
 - Adaptive signal constellation
 - Variable coding rate
 - Interleaving
 - Diversity combining (rake-like)
 - Trellis coding at lower code rates
 - Fiber optics codes not appropriate

- May use ARQ to get better reliability performance

- Variable capacity, long delays, large bandwidth-delay product not previously encountered in terrestrial networks – will have significant interactions with upper layers, severe performance degradation possible
Atmospheric optical communication channel

- Boundary layer turbulence
- Atmospheric turbulence

- 0.1-10 ms fades – outages
- Interarrival time 1-100 ms
- FEC alone will require large interleaver
- Possibly combine with ARQ (delay)
- Diversity via multiple receiver or AO must be used
TCP Window Flow Control & Throughput

- Outage creates window closing, slow start, ...
- Window scale option only takes care of max window problem
- With almost an outage within each RTT, window will not build up – low throughput or assure no outage which is costly in link power
- Other fairness problems when mixed with terrestrial traffic

For $\sigma_x = 0.5$, 1Gb/s link

1 user

For $\sigma_x = 0.5$, 1Gb/s link

many users
Network routing at Layer 3

- Dynamic adaptation based on channel states - variable link capacities and qualities; fast adaptations may lead to oscillations

- Maximizes downlink capacity and/or delay via optimum routing/scheduling

- End-to-end routing including terrestrial subnet

- Time deadline QoS

- Routing algorithm - OSPF ?, ..., Internetworking - BGP?, ...

- Security of Layer 3 network management and control
Transport Layer Protocol – TCP, …?

• TCP is an end-to-end reliable delivery protocol

• If a long delay link does not make any errors, then window options can allocate unfair amount of resources

• If the long delay links have outages, then window flow control may prevent full rate transmissions, leading to very inefficient use of channel

• Proxy service decouples Layer 3 communication – hard to provide QoS such as time deadlines

• UDP plus add on protocol? Others?
Interoperable distributed spacecom

- Interoperable spacecom, EHF, SHF, UHF, ..., commercial
- Data networking with packet switching and QoS (e.g. priority) in space
- Serious internetworking issues
- Security
Network security

Security is crypto + denial of service + interception + location
Involves: crypto + NM&C + all layers + interactions among layers

• Crypto
• Proxy vulnerabilities

• TCP/IP vulnerabilities in open air
• Traffic analysis

• Compromised routers - IP vulnerabilities,
• Hardware vulnerabilities
• Internetworking (BGPs)
• Traffic analysis

• Interference with MAC, ARQ, FEC

• Jamming
• Interception, location, ...
• Intrusion entry point
Window closing due to Physical-layer attack:

TCP reacts poorly to jamming, closes window
Reduces rate to < 1%

- Nulling
- Rerouting
- Change TCP
Some observations

1. **Mesh/circulant constellation** connection topology

2. Space-terrestrial links will have **time-varying capacities, outages, ...**

3. Non-stationary and large delay-rate-product channel properties impact **Transport Layer protocol** performance - TCP or not TCP for space, XCP?, UDP+?

4. **Node switching hardware** architecture important to be a right mix

5. **Routing algorithm** to optimize resources and adapt to channels with **stability**

6. **Network management and control** is a big issue, especially internetworking and **security**

7. **Network architecture must last over 25 years**, therefore

 a. *Not forever tied to a specific today standard*

 b. *Upgradable protocols*

 c. *Good for multiple generations of technologies*

 d. *Pick an architecture trend that evolves*