Business implications of mobile technology developments

Stanley Chia
Group Research and Development
Vodafone

April 2006
Structure

- Competitive landscape
- Access technologies
- Impact of IP
- Impact of storage
- Broadcasting technologies
- Conclusions
Key business indicators

<table>
<thead>
<tr>
<th>Region</th>
<th>Subscription penetration, %</th>
<th>User penetration, %</th>
<th>ARPU US$ / month</th>
<th>Traffic MOU / user</th>
</tr>
</thead>
<tbody>
<tr>
<td>W Europe</td>
<td>102.0</td>
<td>79.5</td>
<td>44.2</td>
<td>212.4</td>
</tr>
<tr>
<td>C/E Europe</td>
<td>76.2</td>
<td>63.1</td>
<td>14.3</td>
<td>131.7</td>
</tr>
<tr>
<td>N. America</td>
<td>71.8</td>
<td>62.6</td>
<td>57.3</td>
<td>763.4</td>
</tr>
<tr>
<td>CALA</td>
<td>42.6</td>
<td>38.9</td>
<td>15.1</td>
<td>105.8</td>
</tr>
<tr>
<td>Asia Pacific</td>
<td>23.0</td>
<td>18.7</td>
<td>22.2</td>
<td>315.0</td>
</tr>
<tr>
<td>Mid East, Africa</td>
<td>21.5</td>
<td>18.9</td>
<td>20.5</td>
<td>166.4</td>
</tr>
<tr>
<td>Worldwide</td>
<td>34.8</td>
<td>29.0</td>
<td>28.5</td>
<td>287.2</td>
</tr>
</tbody>
</table>

CALA = Caribbean and Latin America

Source: Strategy Analytics 2006

Minutes of Use (MOU) for selected countries:
- UK contract: 207 minutes / month (Strategy Analytics 2006)
- UK prepaid: 57
- Spain contract: 188
- Spain prepaid: 37
- Germany contract: 103
- Germany prepaid: 23
- China: 311 (China Mobile 1H 2005)
- India: 367 (TRAI 3Q 2005)
- Japan: 150 (Japan Telecom Ministry)
- US: 760 (Vodafone data)
Barrier to market entry - CAPEX

Breakdown of a typical CAPEX (Capital Expenditure) budget

- BTS & associated infrastructure 43%
- Core Network switching & routing 21%
- Billing systems & software 11%
- Buildings / Land 14%
- Leasehold improvements 3%
- Non-wireless network equipment 8%

Source: Stephens Inc. estimates, Wireless Week November 1, 2005
Market maturity and technologies

- **Emerging markets:** Growth & low cost technologies
- **Mature markets:** Advanced services & cost control
- **New businesses:** Future technologies & services

- Low cost handsets
- High speed data

"Beyond 3G", "Next Generation"
Evolving competitive landscape

- Traditional MNO’s
- “No Frills” MVNO
- Stripped down MNO
- 3G pure play
- Branded MVNO
- FMC Players
- Focused Marketing
- New Services

MNO = mobile network operator
MVNO = mobile virtual network operator
FMC = fixed mobile convergence
Access technologies

- “3G” Evolution
- WiFi
- WiMAX
WCDMA roadmap

HSDPA evolution

Release 5
- HSDPA – 3.6 Mbps (peak)

Release 6
- HSDPA – 7.2 Mbps (peak)
- HSUPA introduction

Release 7
- HSDPA – 14.4 Mbps (peak)

increasing speed & reducing production cost

HSDPA = high speed downlink packet access
HSUPA = high speed uplink packet access
WCDMA = wideband code division multiple access
LTE = Long term evolution
CDMA roadmap

EVDO evolution

Revision 0 (1.25 MHz)
- FL – 2.4 Mbps (peak)

Revision A (1.25 MHz)
- FL – 3.1 Mbps (peak)
- RL – 1.8 Mbps (peak)

Revision B (5 MHz)
- FL – 14.4 Mbps (peak)

increasing speed and staying competitive

EV-DO = Evolution Data Optimize
FL = Forward link
RL = Reverse link
WiFi – Different forms of availability

- In office / home
- Hotspot
- Mesh networks
- Unlicensed Mobile Access (UMA)
WiFi mesh network trial - performance

- Peer-to-peer and User Terminal ("UT") to Access Point ("AP")
- Individual & simultaneous throughput
- Varying numbers of active UT’s

Throughput results:
- Unloaded*, 80% of users to AP < 200kbps
- Loaded**, 80% of users to AP < 120kbps
- Unloaded, 80% P-2-P user < 130kbps
- Loaded, 80% P-2-P users < 45kbps

Packet delay results:
- Unloaded 20% of users to AP > 120 ms
- Unloaded 10% saw delays of > 300 ms
- Up to 7 fold increase for loaded network

*All nodes can relay, but not all nodes generating traffic
**All nodes can relay and all generating traffic

Source: Vodafone
WiMAX players

Both fixed wireless access and mobile wireless access players are involved

FIXED Wireless Access

MOBILE Wireless Access

Cautious approach:

‘WiBRO’
WiMAX commercial status

04
Fixed Pre-WiMAX: FWA Pre-WiMAX kit based on 802.16-2004 and proprietary solution

06
Fixed Nomadic WiMAX: FWA to outdoor and indoor CPE using 802.16-2004. Nomadic hot-zone coverage also possible

08
Mobile WiMAX: Metropolitan zone coverage using 802.16e to laptops

09
Mobile WiMAX: 802.16e in handsets ??

Source: Vodafone, Siemens, Intel, Broadcom

FWA = fixed wireless access
CPE = customer premises equipment
‘Mobile’ WiMAX coverage example

- WiMAX has no magic solution
- The cell ranges for ‘mobile WiMAX’ will be similar to 3G cell ranges as they are both targeting indoor coverage to portable users

<table>
<thead>
<tr>
<th>Environment</th>
<th>Cell range</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dense Urban</td>
<td>300 m</td>
</tr>
<tr>
<td>Urban</td>
<td>500 m</td>
</tr>
<tr>
<td>Sub-urban</td>
<td>1-2 km</td>
</tr>
<tr>
<td>Rural</td>
<td>4-7 km</td>
</tr>
</tbody>
</table>

Assumptions:
- 2.1 GHz
- 95% coverage
- Uplink 128 kbps @ cell edge

Source: Alcatel: Assumes adaptive antenna system, 3dB turbo coding gain, using 3G frequencies
Lex: WiMAX

- Is mobile WiMAX a credible substitute for 3G? Probably not…
 - Most 3G network are already upgrading to an adequate speed
 - Spectrum is a problem
 - Regional licenses
 - Building a ubiquitous network would be far more expensive than buying wholesale 3G access

- Can mobile WiMAX be giant hotspots? This threat cannot be totally ignored…
 - Dual mode handsets are being developed
 - 3G’s potential inadequacies is evident by Qualcomm buying Flarion

The basic strategy of most mobile operators of being married to 3G, but being open mined about flings with other technologies, thus looks correct
Moving towards “all IP”

- **Benefits of moving to a standard architecture built around IP**
 - Standard equipment – lowers cost for carrying traffic
 - New set of vendors – alters competitive dynamics reducing costs
 - New set of service functionality including lower maintenance

CS = circuit switched, **PS** = packet switched, **VoIP** = voice over Internet protocol, **IM** = instant messaging, **IP** = Internet protocol

Vodafone © 2006 / IEEE ComSoc Oakland - East Bay
Evolving to a flat core network architecture

<table>
<thead>
<tr>
<th>Hierarchical</th>
<th>Flat</th>
</tr>
</thead>
<tbody>
<tr>
<td>Incremental capacity scaling of central nodes</td>
<td>☺</td>
</tr>
<tr>
<td>Cross technology interworking</td>
<td>☺</td>
</tr>
<tr>
<td>Routing of user IP flows</td>
<td>☺</td>
</tr>
<tr>
<td>Mapping of QoS</td>
<td>☺</td>
</tr>
<tr>
<td>High speed handoff / soft handoff</td>
<td>☹</td>
</tr>
<tr>
<td>Global radio resource management</td>
<td>☹</td>
</tr>
<tr>
<td>Capital and recurring cost</td>
<td>☹</td>
</tr>
</tbody>
</table>

*GW = Gateway Node, e.g. PDSN, GGSN

BS=base stations, RNC=radio network controller, MSC=mobile switching center, SGSN=Serving GPRS Service Node, GGSN = GPRS Gateway Service Node, PDSN=Packet Data Service Node

Vodafone © 2006 / IEEE ComSoc Oakland - East Bay
Impact of VoIP

Important differences exist across telecoms:

- VoIP in fixed market
- VoIP in mobile enterprise market
- Mass-market consumer VoIP on mobiles
Mass-market consumer mobile VoIP

- Broadband network (HSDPA / EVDO)
- Capable handsets - Low installed base
- Tariff structure – Different from fixed
- Closed vs. Open VoIP systems
- Customer usage – 3/4 calls on mobile

Severely limited for at least 2 to 3 years

Customer proposition is key – not about technology

Operator can exploit advantages as new services / cost efficiencies become available
Media storage

- Storage technology is advancing rapidly in both performance and cost.
- Fundamental to many new mobile services such as FTMD.
- Also enables “non-networked mobility” business models such as iPod or PSP.
- HDD currently higher capacity and cheaper/Mb than removable storage, but memory card is more convenient and cost/Mb is improving quickly.

FTMD = Full Track Music Download
PSP = play station portable
HDD = high density drive

Source: Vodafone

Source: Seagate
Handset memory devices

- Driving multimedia revolution of handsets
- Many challenges
 - High capacities / densities
 - Small form factor
 - High read/write speed
 - Low power consumption
 - High reliability
 - Embedded or removable
 - Mechanical or solid state access
 - Low cost

Source: Vodafone, Sandisk
Mobile broadcasting

- Video streaming on WCDMA
- Drive for DVB-H in Europe
- MBMS, satellite, DMB, MediaFLO, TDTV as alternative broadcast approaches

Forecast suggest mobile TV to hit penetration levels of 30% in the next 10 years

Mobile TV Penetration – UK forecast

- Subscription based Mobile TV service
- Free-to-air Mobile TV service

Mobile TV usage patterns will differ from traditional TV

Source: Enders Analysis, Mobile TV Report, Sept 2005

Consumer behavior

Away from home

At home

Source: Strategic Analytics, Sept 2005

MBMS = Multimedia broadcast multicast service, DMB = Digital mobile broadcast, DVB-H = Digital video broadcast – handheld, FLO = Forward link only
Summary

- **HSPA / EVDO** – here in 2006 and developing quickly

- **WiFi** – good private system but not for public-wide area service

- **WiMAX** – probably too little, too late to be cost effective

- **Coverage** – frequency bands still critical to cost of network

- **VoIP** – coming slowly to mass market mobile

- **Media storage** – a major agent of change

- **Mobile broadcasting** – fragmented format battle or multi-format chip solutions