New IEEE EMF Exposure Safety Standard

C-K. Chou*
TC95 Chairman
International Committee on Electromagnetic Safety (ICES)
Institute of Electrical and Electronics Engineers
Piscataway, NJ, USA

*Speaking as an individual and not for the IEEE
Outline

- History
- Literature reviews
- Similarities
- Differences
- Limit changes
ICES as the Focal Point in the Global Program for EME Safety Standards

Liaison with International Groups: ICNIRP, WHO, IEC, NATO……

Liaison with National Groups: NCRP, ACGIH, US Fed. Agencies, Canada, China, Ireland……

Exposure Standards

TC-95

SC-1: Measurements & Calculations
SC-2: Warning Signs/Hazard Communication
SC-3: 0-3 kHz exposure limits
SC-4: 3 kHz - 300 GHz exposure limits
SC-5: Electro-explosive devices
SC-6: EMF dosimetry modeling

Product Standards

TC-34

SC-1: Experimental
SC-2: Numerical

Promoting safe use of electromagnetic energy

IEEE SASB

SCC39

ICES (AdCom)

Management, Oversight, Fundraising, etc.
IEEE Exposure Standards History

1960: USASI C95 Radiation Hazards Project and Committee chartered
1966: USAS C95.1-1966 (2 pages)
 10 mW/cm² (10 MHz to 100 GHz)
 based on simple thermal model
1974: ANSI C95.1-1974 (limits for E^2 and H^2)
1982: ANSI C95.1-1982 (incorporates dosimetry)
2002: IEEE C95.6-2002 (0-3 kHz)
2006: IEEE C95.1-2005 (3 kHz-300 GHz) published on April 19, 2006
 (comprehensive revision, 250 pages, 1143 ref.)
2014: IEEE C95.1-2345-2014 (0-300 GHz) (NATO/IEEE agreement)
2015: NATO adopted C95.1-2345-2014
2019: IEEE C95.1-2019 (0-300 GHz) to be published in October 2019
 (309 pages, 1550 ref.)
Weight of evidence

IEEE committee reviewed*:

- Quality of test methods
- Size and power of the study designs
- Consistency of results across studies
- Biological plausibility of dose-response relationships
- Statistical associations

*Reviewed all literature (including both positive and negative effects, thermal and non-thermal effects)
Risk profile for RF adverse effects (C95.1)

1. RF shocks and burns
2. Localized RF heating effects
3. Surface heating effects
4. Whole body heating effects
5. Microwave hearing effects
6. Low-level effects
 \textit{(previously ‘non-thermal effects’)}
Low-level effects?

- No adverse effects have been established from low-level exposures despite 70 years of research
- No known interaction mechanisms
- No meaningful dose-response relationship
- Speculative
- Inappropriate for standard setting
Safety factors
[SAR applies 100 kHz- 6 GHz]

- **Whole body averaged**
 Behavioral effects in animals over many frequencies, threshold at 4 W/kg
 10X - 0.4 W/kg for upper tier
 50X - 0.08 W/kg for lower tier

- **Localized exposure** (averaged in 10 g)
 Cataract observed in rabbits, threshold at 100 W/kg
 10X – 10 W/kg for upper tier
 50X – 2 W/kg for lower tier
Revision of C95.1-2005 and C95.6-2002

- C95.1-2019 “Draft Standard for Safety Levels with Respect to Human Exposure to Electric, Magnetic and Electromagnetic Fields, 0 Hz to 300 GHz” – replaces C95.1-2005 and C95.6-2002
The literature review conducted for the C95.1-2005 standard remains a strong foundation for the current standard (Annex C.2-7).

Annex C.1 summarizes many recent health agency and expert group reviews confirm the protectiveness of the current limits.

A review of the extensive literature reveals that electrostimulation is the dominant effect at low frequencies, and thermal effects dominate at high frequencies. Examination of the RF literature reveals no reproducible low level (non-thermal) adverse health effects. Moreover, the scientific consensus is that there are no accepted theoretical mechanisms that would explain the existence of such effects.

Major changes in limits in this standard are the DRLs and ERLs above 6 GHz based on recent thermal modeling studies. Detailed reviews of scientific studies dealing with effects at frequencies above 6 GHz are included in Annex C.8.

Since publication of ANSI C95.1-1982, significant advances have been made in our knowledge of the biological effects of exposure to EMF energy. This increased knowledge strengthens the basis for and confidence in the statement that the ERLs and DRLs in this standard are protective against established adverse health effects.
Similarities

- Scientific basis of the adverse effect levels, i.e., electrostimulation for low frequencies and heating for high frequencies.
- Exposure limits for electrostimulation effects are kept the same as in IEEE Stds C95.6-2002 and C95.1-2005.
- Exposure limits, termed dosimetric reference limits (DRLs), previously called basic restrictions, on whole body average and peak spatial-average specific absorption rates (SARs) remain the same to prevent heating effects from exposure over much of the RF spectrum.
- The exposure reference levels (ERLs), previously called maximum permissible exposure (MPE) levels, for the lower tier remain the same as in IEEE C95.1-2005.
- Continues to support the position of the earlier editions, i.e., upper tier ERLs are protective of public health and safety and that the risk of harm from exposure to fields below the lower tier ERLs has not been confirmed by scientific evidence.
Differences (1 of 3)

- C95.1-2005 two tiers; an upper tier for “people in controlled environments” and a lower tier “action level” for implementing an RF safety program or MPE for the general public. In this standard, maximum exposure limits are established for “persons in unrestricted environments” and for “persons permitted in restricted environments”.

- A dosimetry reference limit (DRL) replaces basic restriction, and exposure reference level (ERL) replaces MPE.

- The safety program initiation level (previously “action level”) is clarified as the ERL marking the transition point between the lower (unrestricted) tier and the upper (restricted) tier.

- The upper frequency boundary for whole body average (WBA) SAR has been changed from 3 GHz to 6 GHz because of improved measurement capabilities and to harmonize with the proposed new ICNIRP guidelines.
The averaging time is **30 minutes** for whole body RF exposure and **6 minutes** for local exposure.

The term “**extremities**” as used in C95.1-2005 is changed to “**limbs**” involving the whole arms and legs, instead of portions distal to the elbows and knees. This change is to harmonize with C95.6-2002 and the ICNIRP guidelines.

Local exposure ERL is now frequency dependent, instead of being a fixed factor of 20 times the whole-body ERL regardless of frequency.

The upper tier **whole-body exposure ERLs above 300 MHz** are different from those in C95.1-2005 to maintain a consistent 5x factor between tiers and to harmonize with ICNIRP guidelines.
The local exposure DRL and ERL for frequencies between 6 GHz and 300 GHz have developed. The DRL is the epithelial power density inside the body surface, and ERL is the incident power density outside the body. Averaging power density area is defined as a 4 cm2 square. Small exposed areas above 30 GHz: the epithelial power density is allowed to exceed the DRL or ERL by a factor of 2, with an averaging area of 1 cm2.

Peak DRL and ERL limits for local exposures to pulsed RF fields are defined, and new fluence limits for single RF-modulated pulses above 30 GHz are introduced. The averaging area for single pulse fluence is 1 cm2 square.

The former induced current limit for both feet is considered an unrealistic condition and is removed. The induced current limits for a single foot are retained.

rms induced and contact current limits for continuous sinusoidal waveforms (100 kHz to 110 MHz) are changed from those in Table 7 of C95.1-2005 to frequency dependent values.
New limits (6 GHz – 300 GHz)

- Since the interactions are mostly at or just within the body surface and are quasi-optical, the DRLs are expressed in terms of a newly introduced metric, the “epithelial power density” and associated exposure averaging interval.

- The corresponding ERLs (incident power density) are defined as function of frequency to account for the increasing epithelial power entering into the body across the air/body. The local exposure DRLs and ERLs are both averaged over 4 cm^2. Above 30 GHz and small area exposure, averaged over 1 cm^2.

- There are limited experimental human data upon which to set limits on exposures above 6 GHz. Pending availability of more data, the limits above 6 GHz were revised to provide a similar level of protection against thermal hazards as that provided in the current limits below 6 GHz, using the results of widely accepted thermal modeling and dosimetric studies.
Table 5—DRLs (100 kHz to 6 GHz)

<table>
<thead>
<tr>
<th>Conditions</th>
<th>Persons in unrestricted environments SAR (W/kg) (^a)</th>
<th>Persons permitted in restricted environments SAR (W/kg) (^a)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Whole-body exposure</td>
<td>0.08</td>
<td>0.4</td>
</tr>
<tr>
<td>Local exposure(^b)</td>
<td>2</td>
<td>10</td>
</tr>
<tr>
<td>(head and torso)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Local exposure(^b)</td>
<td>4</td>
<td>20</td>
</tr>
<tr>
<td>(limbs and pinnae)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

\(^a\) SAR is averaged over 30 min for whole-body exposure and 6 min for local exposure (see B.6 for averaging time).

\(^b\) Averaged over any 10 g of tissue (defined as a tissue volume in the shape of a cube).
Table 6—Local exposure DRLs (6 GHz to 300 GHz)

<table>
<thead>
<tr>
<th>Conditions</th>
<th>Epithelial power density (W/m²)a, b, c</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Persons in unrestricted environments</td>
</tr>
<tr>
<td>Body surface</td>
<td>20</td>
</tr>
</tbody>
</table>

a Epithelial power density through body surface is averaged over 6 min.

b Averaged over any 4 cm² of body surface at frequencies between 6 GHz and 300 GHz (defined as area in the shape of a square at surface of the body).

c Small exposed areas above 30 GHz: If the exposed area on the body surface is small (< 1 cm² as defined by −3 dB contours relative to the peak exposure), the epithelial power density is allowed to exceed the DRL values of Table 6 by a factor of 2, with an averaging area of 1 cm² (defined as area in the shape of a square at the body surface).
Table 7—ERLs for whole-body exposure of persons in unrestricted environments (100 kHz to 300 GHz)

<table>
<thead>
<tr>
<th>Frequency range (MHz)</th>
<th>Electric field strength ((E))(^{a,b,c}) (V/m)</th>
<th>Magnetic field strength ((H))(^{a,b,c}) (A/m)</th>
<th>Power density ((S))(^{a,b,c}) (W/m(^2))</th>
<th>Averaging time (min)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.1 to 1.34</td>
<td>614</td>
<td>16.3 (/f_M)</td>
<td>(1000)</td>
<td>30</td>
</tr>
<tr>
<td>1.34 to 30</td>
<td>823.8 (/f_M)</td>
<td>16.3 (/f_M)</td>
<td>(1800 / f_M^2)</td>
<td>30</td>
</tr>
<tr>
<td>30 to 100</td>
<td>27.5</td>
<td>158.3 (/f_M^{1.668})</td>
<td>(2)</td>
<td>30</td>
</tr>
<tr>
<td>100 to 400</td>
<td>27.5</td>
<td>0.0729</td>
<td>(9400000 / f_M^{3.336})</td>
<td>30</td>
</tr>
<tr>
<td>400 to 20000</td>
<td>---</td>
<td>---</td>
<td>(f_M / 200)</td>
<td>30</td>
</tr>
<tr>
<td>2000 to 300000</td>
<td>---</td>
<td>---</td>
<td>10</td>
<td>30</td>
</tr>
</tbody>
</table>

NOTE—\(S_E\) and \(S_H\) are plane-wave equivalent power density values, based on electric or magnetic field strength respectively, and are commonly used as a convenient comparison with ERLs at higher frequencies and are sometimes displayed on commonly used instruments.

\(^a\) For exposures that are uniform over the dimensions of the body, such as certain far-field plane-wave exposures, the exposure field strengths and power densities are compared with the ERLs in Table 7. For more typical nonuniform exposures, the mean values of the exposure fields, as obtained by spatially averaging the plane-wave equivalent power densities or the squares of the field strengths, are compared with the ERLs in Table 7. (See notes to Table 7 through Table 11 in 4.3.5.)

\(^b\) \(f_M\) is the frequency in MHz.

\(^c\) The \(E\), \(H\) and \(S\) values are those rms values unperturbed by the presence of the body.
Table 8—ERLs for whole-body exposure of persons permitted in restricted environments (100 kHz to 300 GHz)

<table>
<thead>
<tr>
<th>Frequency range (MHz)</th>
<th>Electric field strength ((E)^{a,b,c}) (V/m)</th>
<th>Magnetic field strength ((H)^{a,b,c}) (A/m)</th>
<th>Power density ((S)^{a,b,c}) (W/m²)</th>
<th>Averaging time (min)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.1 to 1.0</td>
<td>1842</td>
<td>16.3 / (f_M)</td>
<td>9000</td>
<td>30</td>
</tr>
<tr>
<td>1.0 to 30</td>
<td>1842 / (f_M)</td>
<td>16.3 / (f_M)</td>
<td>9000 / (f_M^2)</td>
<td>30</td>
</tr>
<tr>
<td>30 to 100</td>
<td>61.4</td>
<td>16.3 / (f_M)</td>
<td>10</td>
<td>30</td>
</tr>
<tr>
<td>100 to 400</td>
<td>61.4</td>
<td>0.163</td>
<td>10</td>
<td>30</td>
</tr>
<tr>
<td>400 to 2000</td>
<td>—</td>
<td>—</td>
<td>(f_M / 40)</td>
<td>30</td>
</tr>
<tr>
<td>2000 to 300 000</td>
<td>—</td>
<td>—</td>
<td>50</td>
<td>30</td>
</tr>
</tbody>
</table>

NOTE—\(S_E\) and \(S_H\) are plane-wave equivalent power density values, based on electric or magnetic field strength respectively, and are commonly used as a convenient comparison with ERLs at higher frequencies and are sometimes displayed on commonly used instruments.

\(^a\) For exposures that are uniform over the dimensions of the body, such as certain far-field plane-wave exposures, the exposure field strengths and power densities are compared with the ERLs in Table 8. For more typical nonuniform exposures, the mean values of the exposure fields, as obtained by spatially averaging the plane-wave equivalent power densities or the squares of the field strengths, are compared with the ERLs in Table 8. (See notes to Table 7 through Table 11 in 4.3.5.)

\(^b\) \(f_M\) is the frequency in MHz.

\(^c\) The \(E, H\) and \(S\) values are those rms values unperturbed by the presence of the body.
Table 9—Local exposure ERLs (100 kHz to 6 GHz) persons in unrestricted environments

<table>
<thead>
<tr>
<th>Frequency range (MHz)</th>
<th>Electric field strength (E) a,b,c,d (V/m)</th>
<th>Magnetic field strength (H) a,b,c,d (A/m)</th>
<th>Power density (S) a,b,c,d (W/m²)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>S_E</td>
</tr>
<tr>
<td>0.1 to 1.34</td>
<td>1373</td>
<td>36.4/f_M</td>
<td>5000</td>
</tr>
<tr>
<td>1.34 to 30</td>
<td>$1842/f_M$</td>
<td>36.4/f_M</td>
<td>$9000/f_M^2$</td>
</tr>
<tr>
<td>30 to 100</td>
<td>61.4</td>
<td>$353/f_M^{1.668}$</td>
<td>10</td>
</tr>
<tr>
<td>100 to 400</td>
<td>$21.2 \times f_M^{0.232}$</td>
<td>$0.0562 \times f_M^{0.232}$</td>
<td>$1.19 \times f_M^{0.463}$</td>
</tr>
<tr>
<td>400 to 2000</td>
<td>—</td>
<td>—</td>
<td>$1.19 \times f_M^{0.463}$</td>
</tr>
<tr>
<td>2000 to 6000</td>
<td>—</td>
<td>—</td>
<td>40</td>
</tr>
</tbody>
</table>

NOTE 1—Below 6 GHz, portable devices are typically tested for DRL compliance (e.g., SAR), for which distinct limits for head and torso, pinnae and limbs are defined.

NOTE 2—S_E and S_H are plane-wave equivalent power density values, based on electric or magnetic field strength respectively, and are commonly used as a convenient comparison with ERLs at higher frequencies and are sometimes displayed on commonly used instruments.

a Determined in air at the location of the body surface.
b Spatial and temporal peaks averaged over 6 min.
c f_M is the frequency in MHz.
d The E, H and S values are those rms values unperturbed by the presence of the body.
e See notes to Table 7 through Table 11 in 4.3.5.
Table 10—Local exposure ERLs (100 kHz to 6 GHz) persons in restricted environments

<table>
<thead>
<tr>
<th>Frequency range (MHz)</th>
<th>Electric field strength ((E)_{a,b,c,d}) (V/m)</th>
<th>Magnetic field strength ((H)_{a,b,c,d}) (A/m)</th>
<th>Power density ((S)_{a,b,c,d}) ((W/m^2))</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.1 to 1.0</td>
<td>4119</td>
<td>36.4/(f_M)</td>
<td>(45\ 000)</td>
</tr>
<tr>
<td>1.0 to 30</td>
<td>4119/(f_M)</td>
<td>36.4/(f_M)</td>
<td>(45\ 000\ / f_M^2)</td>
</tr>
<tr>
<td>30 to 100</td>
<td>137.3</td>
<td>36.4/(f_M)</td>
<td>50</td>
</tr>
<tr>
<td>100 to 400</td>
<td>(47.3 \times f_M^{0.232})</td>
<td>(0.125 \times f_M^{0.232})</td>
<td>(5.93 \times f_M^{0.463})</td>
</tr>
<tr>
<td>400 to 2000</td>
<td>—</td>
<td>—</td>
<td>(5.93 \times f_M^{0.463})</td>
</tr>
<tr>
<td>2000 to 6000</td>
<td>—</td>
<td>—</td>
<td>200</td>
</tr>
</tbody>
</table>

NOTE 1—Below 6 GHz, portable devices are typically tested for DRL compliance (e.g., SAR), for which distinct limits for head and torso, pinnae and limbs are defined.

NOTE 2—\(S_E\) and \(S_H\) are plane-wave equivalent power density values, based on electric or magnetic field strength respectively, and are commonly used as a convenient comparison with ERLs at higher frequencies and are sometimes displayed on commonly used instruments.

\(a\) Determined in air at the location of the body surface.

\(b\) Spatial and temporal peaks averaged over 6 min.

\(c\) \(f_M\) is the frequency in MHz.

\(d\) The \(E, H\) and \(S\) values are those rms values unperturbed by the presence of the body.

\(e\) See notes to Table 7 through Table 11 in 4.3.5.
Table 11 — Local exposure ERLs (6 GHz to 300 GHz)

<table>
<thead>
<tr>
<th>Frequency</th>
<th>Persons in unrestricted environments</th>
<th>Persons in restricted environments</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Incident Power Density (W/m²)³, b, c, d, e</td>
<td>Incident Power Density (W/m²)³, b, c, d, e</td>
</tr>
<tr>
<td>6 GHz</td>
<td>40</td>
<td>200</td>
</tr>
<tr>
<td>6 GHz to 300 GHz</td>
<td>55f_G⁻0.177</td>
<td>274.8f_G⁻0.177</td>
</tr>
<tr>
<td>300 GHz</td>
<td>20</td>
<td>100</td>
</tr>
</tbody>
</table>

³ Incident power density is averaged over 6 min for local exposure.

³ Averaged over any 4 cm² of body surface for 6 GHz to 300 GHz (area defined as surface of the body in the shape of a square).

³ Small exposed areas above 30 GHz: If the exposed area on body surface is small (<1 cm² as defined by -3 dB contours relative to the peak exposure), the incident power density is allowed to exceed the ERL values of Table 11 by a factor of 2, with an averaging area of 1 cm² (defined as area in the shape of a square at surface of the body).

³ Assessed in air at the location of the body, but the body is absent during assessment.

³ f_G is the frequency in GHz.

³ See notes to Table 7 through Table 11 in 4.3.5.
Intense pulse fluence limits

- **Persons in unrestricted environments:**
 \[< 0.2 \tau^{1/2} \text{ kJ/m}^2 \]

- **Persons permitted in restricted environments:**
 \[< 1 \tau^{1/2} \text{ kJ/m}^2 \]

NOTE—Units for coefficients in the above equations are kJ·m\(^{-2}·s^{-1/2}\), where \(\tau\) is the pulse width in seconds. For this limit the exposure is to be averaged over 1 cm\(^2\) areas of body surface. For pulsed fields above 30 GHz, the averaging area is 1 cm\(^2\). For other pulsed fields, the averaging areas are the same as for continuous wave exposure.
Table B.1—Application of “Safety Factors” to DRLs for whole body exposure to environmental fields

<table>
<thead>
<tr>
<th>Frequency Range</th>
<th>Adverse Effect</th>
<th>Safety Factor (Divisor)</th>
<th>Applied Metric</th>
</tr>
</thead>
<tbody>
<tr>
<td>≤ 100 kHz CW; ≤ 5 MHz (pulsed)</td>
<td>Pain (PNS) Synapse Modulation (CNS)</td>
<td>3 9</td>
<td>in-situ E-field (V/m)</td>
</tr>
<tr>
<td>100 kHz to 6 GHz</td>
<td>Thermal stress (e.g., as reflected in work stoppage)</td>
<td>10 50</td>
<td>SAR (W/kg) or incident power density (W/m²)</td>
</tr>
<tr>
<td>> 6 GHz</td>
<td>Thermal pain in skin</td>
<td>2 to 5 10 to 25</td>
<td>epithelial power density (W/m²)</td>
</tr>
</tbody>
</table>

*See Annex B.3.2.

NOTE 1—Safety factors in this table apply to DRLs for whole body exposures to environmental fields. Special exceptions may exist for localized exposure. See Annex B.3.2.

NOTE 2—The safety factors at low frequencies (1st row of data) apply to the magnitude of the internal *E*-field. Factors at RF frequencies apply to power, and therefore are applied to the square of the internal or surface field.
C95.1-2019 Annexes

- Annex B (informative) Rationale
- Annex C (informative) Identification of levels of exposure associated with adverse effects: summary of the literature
- Annex D (informative) Practical examples—applications
- Annex E (informative) Bibliography
Free IEEE C95 Safety Standards

- IEEE C95.1™-2019 (when published)
 IEEE Standard for Safety Levels with Respect to Human Exposure to Electric, Magnetic, and Electromagnetic Fields, 0 Hz to 300 GHz
- IEEE C95.1-2345™-2014
 Military Workplaces--Force Health Protection Regarding Personnel Exposure to Electric, Magnetic, and Electromagnetic Fields, 0 Hz to 300 GHz
- IEEE C95.2™-2018
- IEEE C95.3™-2002
 Measurements and Computations of Radio Frequency Electromagnetic Fields with Respect to Human Exposure to Such Fields, 100 kHz-300 GHz
- IEEE C95.3.1™-2010
 Measurements and Computations of Electric, Magnetic, and Electromagnetic Fields with Respect to Human Exposure to Such Fields, 0 Hz to 100 kHz
- IEEE C95.4™-2002
- IEEE C95.7™-2014
 Recommended Practice for Radio Frequency Safety Programs, 3 kHz to 300 GHz

Sponsored by the United States Navy, Air Force, and Army.
Differences in limits

Comparison of Proposed ICNIRP and Proposed IEEE Exposure Limits for General Public/Unrestricted Environments

From Ric Tell
Comparison of Proposed ICNIRP and Proposed IEEE Local Exposure Limits (assumed 6-minute exposure)

Averaging area 6-30 GHz = 4 cm²
Averaging area >30-300 GHz = 1 cm²

From Ric Tell
Comparisons of PC95.1 2018 power density exposure limits

From Vitas Anderson
Differences of Exposure Limits between the New ICNIRP Guidelines and IEEE C95.1-2019 Standard

Co-Chairs: C-K. Chou and Eric van Rongen

Speakers:
ICNIRP: Rodney Croft, Akimasa Hirata
ICES: Kenneth R. Foster, Richard Tell

June 25, 2019
Montpellier, France
Conclusions

- C95.6-2002 and C95.1-2005 are combined into C95.1-2019 to protect against established adverse health effects.
- Due to thermophysiological considerations, time averaging now depends on whether it is a whole-body or local exposure.
- Main changes are the limits in the frequency range of 6 GHz to 300 GHz. Local exposure DRLs and ERLs are derived from recent thermal modeling studies. The “epithelial power density” at the body surface is a newly introduced DRL for frequencies above 6 GHz.
- The standard is approved by IEEE on February 11, 2019. A corrigendum is being processed.
- Expected publication in October 2019.
Promoting safe use of electromagnetic energy

Thank you
Macro cells for wide area coverage

In-building and street small cells

Home small cells
Root of Concerns: “Radiation”

RF Exposure ≠ Nuclear Radiation

Must know! about Cellphone Radiation
In vivo study
- Species
- Strain
- Sex
- Age
- Extrapolation from animal to humans

In vitro study
- Monolayer
- Cell suspension
- Isolated tissue
- Extrapolation to in vivo
Engineering Complexity

- Exposure systems
- Far Field
- Near Field
- Dosimetry
- Resonance
- Modulation
 - CW, Pulsed
 - AM, FM, TDMA, CDMA, LTE, 5G
- Experimental Artifacts
- Temperature Control
Going in circles

“I’ve got it, too, Omar... a strange feeling like we’ve just been going in circles.”

Unbalanced research ability in either biological science or engineering expertise (or both are weak) makes dealing with the complexities difficult.
Quality of Science

(Established vs. Possible)

<table>
<thead>
<tr>
<th></th>
<th>Confirmed and Established Science</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Confirmed and Established Science</td>
</tr>
<tr>
<td>B</td>
<td>Unconfirmed report (could be useful)</td>
</tr>
<tr>
<td>C</td>
<td>Unconfirmed report contradicts A</td>
</tr>
<tr>
<td>D</td>
<td>Unconfirmed report with clear flaws and artifacts</td>
</tr>
<tr>
<td>E</td>
<td>Junk report in peer-reviewed literature</td>
</tr>
<tr>
<td>F</td>
<td>Junk report in non-peer-reviewed literature</td>
</tr>
</tbody>
</table>

Adapted from Osephchuk [2004]

“Good science is never outdated.” -- Herman P. Schwan
Expert Reviews (2010-2018)

Statements from Governments and Expert Panels Concerning Health Effects and Safe Exposure Levels of Radiofrequency Energy (70 citations)
http://www.ices-emfsafety.org/expert-reviews/

Adverse health effects have not been confirmed for RF exposures that comply with contemporary science-based safety guidelines, such as those developed by ICNIRP and IEEE/ICES.
Pathology findings – Brain

Hyperplastic Brain Lesions in Male Rats

<table>
<thead>
<tr>
<th></th>
<th>Control</th>
<th>GSM Modulation</th>
<th>CDMA Modulation</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0 W/kg</td>
<td>1.5 W/kg</td>
<td>1.5 W/kg</td>
</tr>
<tr>
<td></td>
<td>90</td>
<td>90</td>
<td>90</td>
</tr>
<tr>
<td>Number examined</td>
<td>90</td>
<td>90</td>
<td>90</td>
</tr>
<tr>
<td>Malignant glioma</td>
<td>0*</td>
<td>3 (3.3%)</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>90</td>
<td>90</td>
<td>90</td>
</tr>
<tr>
<td>GLIAL cell hyperplasia</td>
<td>0</td>
<td>2 (2.2%)</td>
<td>2 (2.2%)</td>
</tr>
<tr>
<td></td>
<td>90</td>
<td>90</td>
<td>90</td>
</tr>
<tr>
<td></td>
<td>90</td>
<td>90</td>
<td>90</td>
</tr>
</tbody>
</table>

* Historical control incidence in NTP studies: 11/550 (2.0%), range 0-8%

* Significant SAR-dependent trend for CDMA exposures by poly-6 (p < 0.05)
Pathology findings – Heart

Hyperplastic Heart Lesions in Male Rats

<table>
<thead>
<tr>
<th></th>
<th>Control</th>
<th>GSM Modulation</th>
<th>CDMA Modulation</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0 W/kg</td>
<td>1.5 W/kg</td>
<td>3.0 W/kg</td>
</tr>
<tr>
<td>Number examined</td>
<td>90</td>
<td>90</td>
<td>90</td>
</tr>
<tr>
<td>Schwannoma</td>
<td>0*</td>
<td>2 (2.2%)</td>
<td>1 (1.1%)</td>
</tr>
<tr>
<td>Schwann cell hyperplasia</td>
<td>0 (1.1%)</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

* Historical control incidence in NTP studies: 9/699 (1.3%), range 0-6%

* Significant SAR-dependent trend for GSM and CDMA exposures by poly-3 (p < 0.05)

** Significant different than controls poly-3 (p < 0.05)
NTP study (2018)

General public exposure limit is 0.08 W/kg (75 X higher)

Higher exposure groups live longer

68%
55%
50%
28%

Greater survival in all groups of exposed males compared to controls
Actual handset transmitted power (3G)

![Graph showing distribution of mobile phone transmitted power in different areas.](image)

Adaptive Power control

Max power 125 mW

Mostly 0.1 mW

Fig. 3. Distribution of mobile phone transmitted power in different areas.
Actual 4G phone transmitted power

![Graph showing CDF of time-averaged UE Tx power in different environments.](image)

FIGURE 3. Distribution of time-averaged output power of UE in LTE network in different environments.

Established Scientific Understanding (in green)

- Microwave radiation is dangerous
 ✔ Only when at high intensity
- We don’t have enough understanding of its effects
 ✔ About 70 years of research
- Many reports show non-thermal effects
 ✔ Either not repeatable or no proven health effects
- It can cause cancer, and many other diseases
 ✔ No proof and no mechanism other than heating
- The standards are not protective
 ✔ Worldwide expert groups and health authorities agree they are
- Need precautionary measure to be safe than sorry
 ✔ Safety standards already have large safety margins