Power and Leakage Reduction in the Nanoscale Era

Stefan Rusu
Senior Principal Engineer
Intel Corporation

August 21st, 2008

Copyright © 2008, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.
Outline

• Power components and trends
• Active power reduction techniques
• Leakage reduction techniques
• Power management methods
• Summary
Server Processor Power Trends

![Graph showing trends in server processor power over years, with labels for total power, active power, and leakage.](graph.png)
Power Components

• Total power includes switching, short-circuit and leakage:

\[P = P_{sw} + P_{short} + P_{leakage} \]

\[P_{sw} = f \cdot V_{cc}^2 \cdot \sum_{i=1}^{n} AF_i \cdot C_i \]

\[AF_i = AF_{i}^{0\text{-}delay} + AF_{i}^{glitch} \]

• Glitches are a significant contributor to power as illustrated in the NOR gate example below
Short Circuit Power

- Short circuit power is a function of \((V_{cc} - 2V_t)^3\)
- Linearly increases with input slope ▶ Avoid large slopes

H. Veendrick (NXP), JSSC, 1984
Voltage Scaling Trends

- Vcc scaling has been driven by power and oxide reliability
- Gate overdrive is decreasing with each technology generation
- VT is scaling very slowly
- Vcc scaling trend is decreasing due to performance concerns
Optimal active/leakage power ratio is 70/30

Kuroda (Keio Univ.),
ICCAD 2002
Source/Drain Leakage (I_{off})

Research data in literature (diamonds)

Production data in literature (squares)

Physical Gate Length (nm)

I_{off} (A/um)
Gate Leakage Trends

- SiON scaling running out of atoms
- Poly depletion limits inversion T_{OX} scaling

K. Mistry, et. al, IEDM 2007
45nm High-K + Metal Gate Transistors

Metal Gate
- Increases the gate field effect

High-K Dielectric
- Increases the gate field effect
- Allows use of thicker dielectric layer to reduce gate leakage

HK + MG Combined
- Drive current increased >20%
- Or source-drain leakage reduced >5x
- Gate oxide leakage reduced

http://download.intel.com/pressroom/kits/45nm/Press%2045nm%20107_FINAL.pdf
HK+MG Gate Leakage Reduction

- Gate leakage is reduced >25X for NMOS and 1000X for PMOS

65nm: Bai, 2004 IEDM
45nm: Mistry, 2007 IEDM
Leakage Dependency on Voltage

Voltage (V) vs. Normalized Leakage

130nm process

Sub-threshold Leakage

Gate Leakage

[Krishnamurthy, et. al, ASICON 2005]
... And Temperature

![Graph showing temperature vs. relative leakage with lines for Sub-threshold, Gate, and Junction labels.](Mukhopadhyay, et al., VLSI Symposium 2003)
Outline

• Power components and trends
• Active power reduction techniques
 – Clock gating
 – Reduce clock loading
 – Multiple cores
 – Multiple voltage domains
• Leakage reduction techniques
• Power management methods
• Summary
Active Power Reduction

Reduce switched capacitance:
- Minimize diffusion, wire and gate loading, particularly in high activity factor nodes (clocks, domino)
- Use more efficient layout techniques

Technology scaling:
- Dynamic voltage scaling
- Supply voltage scaling is slowing down
- Thresholds don’t scale

\[P = \alpha C_L V^2 f_{CLK} \]

Reduce switching activity:
- Conditional execution
- Conditional clocking
- Conditional precharge
- Turn off inactive blocks
- Reduce toggling of high capacitance nodes/busses

Reduce clock frequency:
- Use parallelism
- Less pipeline stages
- Use double-edge flip-flops
Clock Gating

- Save power by gating the clock when data activity is low
- Widest used switching power reduction technique
- Requires early En signal arrival, as well as detailed timing and logic validation
Conditional Clocking Flip-Flop

• FF does not consume active power when the data input does not change its state

M. Hamada (Toshiba), CICC, 2005
Conditional Clocking Flip-Flop (2)

<table>
<thead>
<tr>
<th></th>
<th>conventional</th>
<th>conditional clk</th>
</tr>
</thead>
<tbody>
<tr>
<td>Power</td>
<td></td>
<td></td>
</tr>
<tr>
<td>P_{LHHL}</td>
<td>1.00</td>
<td>0.35</td>
</tr>
<tr>
<td>P_{LLHH}</td>
<td>1.28</td>
<td>0.00</td>
</tr>
<tr>
<td>Delay (ps)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CP-to-Q</td>
<td>82</td>
<td>86</td>
</tr>
<tr>
<td>Setup</td>
<td>84</td>
<td>199</td>
</tr>
<tr>
<td>Hold</td>
<td>-72</td>
<td>-195</td>
</tr>
<tr>
<td>Area</td>
<td>1.00</td>
<td>1.33</td>
</tr>
</tbody>
</table>

- Taking into account the overhead of the auxiliary circuits, the flip-flop consumes less power than the conventional flip-flop when the data transition probability is less than 55%.
- Issues: leakage, setup time

M. Hamada (Toshiba), CICC, 2005
Latch Clustering

• Minimize the capacitive loading on local clock buffers by clustering latches around them
 – Tradeoff between latch placement flexibility and clock power savings
 – Reduction in clock skew between capturing and launching latch compensates for loss in latch placement flexibility
Latch clustering reduces local clock net capacitance by 25%
Multiple Clock Grid Types

- PLL (Clock Generator)
- Core dense MCLK grid
- Un-Core ZCLK grid
- Un-Core pre-global ZCLK spine
- Un-Core sparse SCLK grid
- Un-Core pre-global MCLK spine
- De-skew buffer

Match the clock grid to the underlying circuits to reduce clock loading

S. Tam, ISSCC 2006
Multiple Voltage Domains
Operate each block at the lowest possible voltage
Cell-Level Dual-VDD Approach

• Use reduced voltage $VDDL$ in non-critical paths
• Apply original voltage $VDDH$ to timing critical paths

• Challenges: minimize # of level converters by clustering

K. Usami (Toshiba), DAC 1998
Cell-Level Dual-VDD (cont)

Row-by-Row layout architecture with Dual-V_{DD}

- P&R tool determines which rows should be V_{DDL}
- Clock tree synthesis using V_{DDL} clock buffers
- 25% power reduction demonstrated on MPEG4 video codec core

K. Usami (Toshiba), DAC 1998
Outline

• Power components and trends
• Active power reduction techniques
 • Leakage reduction techniques
 – Long channel devices
 – High-Vt transistors
 – Body bias
 – Transistor stacking
 – Cache leakage reduction
 – Power gating and multiple supplies
• Power management methods
• Summary
Long-Le Transistors

- All transistors can be either nominal or long-Le
- Most library cells are available in both flavors
- Long-Le transistors are ~10% slower, but have 3x lower leakage
- All paths with timing slack use long-Le transistors
- Initial design uses only long channel devices

Rusu, et. al, ISSCC 2006
Long-Le Transistors Usage

Long channel device average usage summary
Cores 54%
Uncore 76%
Cache 100%

Rusu, et. al, ISSCC 2006
IBM’s Power Processors are leveraging triple Vt process option

Clabes, et al. (IBM), ISSCC 2004
Leakage Reduction Circuit Techniques

Body Bias

Stack Effect

Equal Loading

Sleep Transistor

Logic Block
Body Bias Leakage Reduction

Keshavarzi, et al., D&TC 2002
Stack Forcing

- Force one transistor into a two transistor stack with the same input load
- Can be applied to gates with timing slack
- Trade-off between transistor leakage and speed

Narendra, et al, ISLPED 2001
• Leakage reduced significantly when two transistors are off in a stack
• Educate circuit designers, monitor average stacking factor

![Graph showing leakage as a function of number of OFF transistors in stack.](image)
Cache Leakage Reduction Techniques

<table>
<thead>
<tr>
<th>Source Biasing (V_{SL})</th>
<th>Reverse Body-biasing (V_{PWELL}, V_{NWELL})</th>
<th>Dynamic V_{DD} (V_{DL})</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Floating Bit Lines (V_{BL}, V_{BLB})

<table>
<thead>
<tr>
<th>V_{BL}, V_{BLB}</th>
<th>V_{DD}</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_{BL}</td>
<td>Active</td>
</tr>
<tr>
<td>V_{BLB}</td>
<td>Active</td>
</tr>
<tr>
<td>V_{DD}</td>
<td>Standby</td>
</tr>
</tbody>
</table>

Negative Word Line (V_{WL})

<table>
<thead>
<tr>
<th>V_{WL}</th>
<th>V_{DD}</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_{WL}</td>
<td>0</td>
</tr>
</tbody>
</table>

Forward Body-biasing + Super high Vt (V_{PWELL})

<table>
<thead>
<tr>
<th>V_{PWELL}</th>
<th>V_{DD}</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_{PWELL}</td>
<td>0 V</td>
</tr>
</tbody>
</table>

Cache Sleep and Shut-off Modes

PMOS reduces junction leakage and has better shut-off

Leakage Shut-off Infrared Images

16MB part

8MB part

4MB part

16MB in sleep mode

8MB sleep shuts-off

4MB 12MB sleep shuts-off

Leakage reduction ▶ 3W (8MB) 5W (4MB)

Rusu, et al., ISSCC 2006
Cache Dynamic Shut-off

Normal Operation
• In the full-load state, all 16 ways are enabled (green)

Cache-by-Demand Operation
• Under idle or low-load states, cache ways are dynamically flushed out and put in shut-off mode (red)

Sakran, et al., ISSCC 2007
Multiple Power Domains

<table>
<thead>
<tr>
<th>Implementation example of conventional power domain.</th>
<th>Implementation example of dozens of power domains.</th>
</tr>
</thead>
</table>

![Conventional Power Domain Image](image1)

![Dozens of Power Domains Image](image2)

Kanno, et. al, ISSCC-2006
Hitachi + Renesas
Power Domains Activation Examples

Kanno, et. al, ISSCC-2006
Hitachi + Renesas
IBM POWER6 Voltage Domains

- POWER6 infrastructure contains 4 voltage domains

<table>
<thead>
<tr>
<th>Rail</th>
<th>Purpose</th>
<th>Plot Color</th>
</tr>
</thead>
<tbody>
<tr>
<td>VDD</td>
<td>logic</td>
<td>all</td>
</tr>
<tr>
<td>VCS</td>
<td>Array</td>
<td>Red</td>
</tr>
<tr>
<td>VIO</td>
<td>IO, PLL, MC</td>
<td>Blue</td>
</tr>
<tr>
<td>VSB</td>
<td>Powerup</td>
<td>Green</td>
</tr>
</tbody>
</table>

- Multi-rail power grid defined based on macro current requirements & iterative IR analysis of each rail.

- Voltage domain of macros and global signals explicitly specified in RTL and validated by checking tools.

J. Friedrich (IBM), ISSCC 2007
Split vs. Connected Power Grid

- Chips are roughly same process speed
- 17% to 7% droop by connecting power grids

N. James (IBM), ISSCC 2007
Split vs. Connected Core Supplies

- Normalized to Process Sensitive Ring Oscillator (PSRO), the Fmax is ~5-10% higher on chips with connected core power grids

N. James (IBM), ISSCC 2007
Outline

• Power components and trends
• Active power reduction techniques
• Leakage reduction techniques
• Power management methods
 – Voltage / Frequency Scaling
 – Deep Power Down Technology
 – Enhanced Dynamic Acceleration Technology
 – Power Throttling
 – Future Directions

• Summary
Voltage / Frequency Scaling

- Voltage-frequency scaling with active thermal feedback
- Multi-operating states from high performance to deep sleep
- Power management reduces average and peak power

Power scaling range ~ 3–4

Minimum Operating Voltage

Power $\propto V^3$

Increasing Performance

Increasing Efficiency (Freq/Power)

Most efficient operating point

Deep Sleep / Quick Start

Frequency

Power
Itanium® Processor V/F Scaling

- Frequency
- Frequency & Voltage
- Core Leakage
- Other
- Core Switching

R. McGowan, ICCAD 2005
V / F Control System

Power Sensor

Thermal Sensor

Micro-Controller

Supply VRM

10s of µs

Voltage Sensor

Voltage to Freq. Converter

Clock

100s of ps

R. McGowan, ICCAD 2005
Power Measurement

– Uses package resistance to measure power
 • Widely variable, changes with temperature
– VCO speed changes with process, temperature
– Uses a lookup table created with reference V
 • Unique to each part / operating condition
 • Linear interpolation for entries not in the table
– On die microcontroller software generates table, calibration and computes final power measurement

\[Power = V_{Die} \left(\frac{V_{Conn} - V_{Die}}{R_{Pkg}} \right) \]
• Two thermal sensors per core
• Mux thermal diodes into VCOs to measure temperature
31% power reduction for only 10% frequency drop

R. McGowan, ICCAD 2005
Deep Power Down Technology

- Core voltage
- Core clock
- PLL
- L1 caches
- L2 cache
- Wakeup time
- Idle power

* Rough approximation

DPD enables reaching lower limit of CPU idle power of 0 W

V. George, et al., Hot Chips 2007
Penryn DPD Implementation

STATE STORAGE:
– 8KB per core, ECC protected
– Powered from I/O Vcc (VccP)

STATE DEFINITION:
– What to include?
– Criteria: “Software seamless”
– Inclusions:
 • All Architectural state
 • Most micro-architectural state
– Exclusions:
 • Temp registers used by ucode
 • Some others on a case by case basis

MICROCODE:
– State save and restore
– Core synchronization

Power Management Unit:
– Manages the DPD power-up sequence
– Manages entry/exit protocol with platform

V. George, et al., Hot Chips 2007
DPD Technology Entry/Exit

- S/W instruction initiates processor DPD entry
- CPU does rest of sequencing with platform
- Protocol with chipset to block snoops (no CPU wakeup required) while in DPD state
- Exit initiated by a break event (int) in platform
- CPU drives VID to VRM, internal hardware reset, state restore and execution resumption

V. George, et al., Hot Chips 2007
DPD Results (Average Power)

- 27% to 44% (based on the leakage of the part) Average Power reduction as measured by Mobile Mark – Office Productivity benchmark due to DPD feature
- Significant improvement compared to previous generation (Merom)
- Measured Exit latency for DPD state: ~150 - 200 us => In expected range
Enhanced Dynamic Acceleration Technology (EDAT)

Concept: In multi-core CPUs, use the power headroom of idle core to boost performance of the active core

Two cores active:
Marked frequency

Single core active:
EDAT freq

EDAT provides single-threaded performance boost

V. George, et al., Hot Chips 2007
EDAT Implementation Overview

Microarchitecture
- Entry on OS request AND other core idle
- Idle core defined as “CC3” or deeper C-state
- EDAT Freq pre-programmed in chip based on power, reliability and other constraints
- Exit EDAT mode when Idle core wakes up

Hysteresis mechanism
- Allows short durations where 2 cores active
- Reduces perf loss for low activity wake-ups
- Implemented using a few counters
- Voltage Regulator needs to provide for this
- Benefits most at high timer tick rates

OS interface
- OS requests P[0] state if perf demand exists
- EDAT logic grants it if power headroom exists

V. George, et al., Hot Chips 2007
EDAT Performance Results

EDAT Performance on SPEC CPU2000 (Estimated)

Performance gains of about 5% on SPECfp_base2000 and 7% on SPECint_base2000 due to EDAT within the same TDP power envelope
Sun’s Niagara 2 Power

Niagara2 Worst Case Power = 84 W @ 1.1V, 1.4 GHz

- CMT approach used to optimize the design for performance/watt.
- Clock gating used at cluster and local clock-header level.
- 'GATE-BIAS' cells used to reduce leakage.
 - ~10% increase in channel length gives ~40% leakage reduction.
- Interconnect W/S combinations optimized for power-delay product to reduce interconnect power.

U. Nawathe (Sun Micro), ISSCC 2007
Niagara2 Power Management

- Software can turn threads on/off.
- 'Power Throttling' mode controls instruction issue rates to manage power consumption.
- On-chip thermal diodes monitor die temperature.
 - Helps ensure reliable operation in case of cooling system failure.
- Memory Controllers enable DRAM power-down modes and/or control DRAM access rates to control memory power.

U. Nawathe (Sun Micro), ISSCC 2007
Future Directions

- A sample 2D mesh network with three Voltage / Frequency Islands
- Communication across different islands is achieved through mixed clock / mixed voltage FIFOs
Fine Grain Power Management

Cores with critical tasks
Freq = f, at Vdd
TPT = 1, Power = 1

Non-critical cores
Freq = f/2, at 0.7xVdd
TPT = 0.5, Power = 0.25

Cores shut down
TPT = 0, Power = 0

Adapted from S. Borkar, DAC 2007
Summary

• Low power design is essential for modern computing from hand-held all the way to servers

• Major low-power technology directions:
 – Advanced process technology features:
 High-K + metal gate, strained silicon
 – Multiple clock and voltage domains
 – Advanced voltage / frequency scaling
 – Operate at the lowest possible voltage
 – Turn off blocks that are not in use (clock and power gating)

• Low-power design techniques are becoming a way of life at all levels of chip and platform design!