An 802.11a/b/g SoC for Embedded WLAN Applications

Lalitkumar Nathawad1, David Weber2, Shahram Abdollahi2, Phoebe Chen1, Syed Enam1, Brian Kaczynski2, Alireza Kheirkhahi1, MeeLan Lee2, Sotirios Limotyrakis1, Keith Onodera2, Katelijn Vleugels2, Masoud Zargari1, Bruce Wooley3

1Atheros Communications, Irvine, California
2Atheros Communications, Santa Clara, California
3Stanford University, Stanford, California
Outline

- Introduction
 - Embedded WLAN applications
- SoC block diagram
- Power management
- Transceiver architecture
 - 5GHz/2.4GHz transmitter
 - 5GHz/2.4GHz receiver including ADC
 - Frequency synthesizer
- Measurement results
Embedded WLAN

- **Applications:** Wi-Fi phones, digital cameras, networked gaming, PDAs, MP3 players, etc.
 - Long battery life → low sleep/standby power
 - Small form-factor → single chip integration

- **Support for wide range of crystal frequencies**
 - Share crystal oscillator with host system

- **Support for common I/O interfaces**
 - SDIO, SPI, CF, etc.

- **Dual-band operation at 2.4GHz and 5GHz**
SoC Block Diagram

19.2, 24, 26, 38.4, 40 or 52 MHz crystal or external reference
Low frequency 32kHz crystal

SoC

RF Transceiver

Data Converters

Digital PHY & MAC

I/O Interface

Host System

Power Management

BB PLL

CPU

RX/TX & Diversity Switches

Ant1

Ant2

5G

2.4G

5G

2.4G
Power Management

- Operating modes: Sleep, Standby, RX, TX

- Programmable LDO regulators used to lower the supply voltage in sleep mode
 - All register states maintained.
 - Reduced supply leakage current

- Standby power depends on RX duty cycle
 - Reduce power by staggering the power-on of analog blocks based on settling time.
 - Gate clock signals to inactive digital circuits
 - Run off of the 32kHz clock when idle
Sliding-IF Architecture

- Only one synthesizer needed to generate LO frequencies
- \(f_{VCO} = \frac{2}{3} f_{RF5}, \frac{4}{3} f_{RF2} \rightarrow \text{No LO Pulling} \)

5GHz Band: 4.9 - 5.925 GHz
2.4GHz Band: 2.412 - 2.484 GHz
Dual-Band Transmitter

- **5G**
 - RF Gain Ctrl
 - PA
 - RFVGA1 & 2

 \[\text{LO}_{RF5} = \frac{2}{3} f_{RF5} \]

- **2.4G**
 - RF/IF Gain Ctrl
 - PA
 - RFVGA
 - IFVGA

 \[\text{LO}_{RF2} = \frac{2}{3} f_{RF2} \]

- **DAC**

- **3rd-Order LPF**

- **BB Gain Ctrl**

- **160/176 MS/s**

- **I**

- **Q**
Transmit Power Control

- 5b DAC to correct power detector DC offset
- TX gain adjusted on a per packet basis
Dual-Band Receiver

LO_{RF5} = \frac{2}{3} f_{RF5}

LO_{RF2} = \frac{2}{3} f_{RF2}

5GHz: NF = 5.5dB
2.4GHz: NF = 5.0dB

5G
LNA
RFVGA
RF Gain Ctrl

2.4G
LNA
RFVGA
RF Gain Ctrl

I Offset Correction
Q Offset Correction

40/44 MS/s
Dual Input ADC

I
Q

I
Q

DAC

DAC

I

Q

LNA
RFVGA
Dual-Input A/D Converter

- Time-multiplexed pipeline architecture
 ⇒ I & Q inputs are sampled simultaneously
 ⇒ Pipeline stages run at 80/88 MHz (2×\(f_S\))

- Almost half the area and similar power as 2 non-multiplexed ADC’s
 ⇒ Area: 0.45mm x 1.0mm, Power: 48mW
ADC Sample/Hold Circuit

\[f_s = \frac{1}{f_s}, \quad f_s = 40 / 44 \text{ MS/s} \]

- \(I_p, I_n, Q_p, Q_n \)
- \(C_1, C_2, C_3, C_4 \)
- \(\phi_{S}, \phi_{H,I}, \phi_{H,Q} \)
- \(\text{Sample Hold I Hold Q Wait} \)
- \(\text{out}_n, \text{out}_p \)
Fractional-N Synthesizer

Xtal Osc

Ref. Div.

19.2 - 52 MHz

PFD

Regulator

3rd Order Loop Filter

Z(s)

R,C cntrl

Regulator

VCO

V_c

8 coarse tuning

I_{CP} cntrl

I_{CP}

f_{VCO}

\frac{f_{VCO}}{8P+S+N_{\Sigma-\Delta}}

f_{REF}

\text{P \& S counters}

3

\sum-\Delta Modulator

\frac{P \& S counters}{\div 8/9 Prescaler}

3.2 - 4 GHz

To LO Buffers and Dividers

Frequency Divider
CMOS LC-tank VCO

- Tuning range: 3.2 - 4 GHz
 ⇒ 8-bit switch-capacitor bank for coarse tuning
 ⇒ diode varactor for continuous fine tuning

- Voltage-to-freq. gain:
 \[K_{VCO} = 2\pi^2 L \cdot f_{VCO}^3 \cdot \frac{\partial C}{\partial V_C} \]

- Large variation in \(K_{VCO} \):
 \(K_{VCO} = 34\text{MHz/V @3.2GHz} \)
 \(K_{VCO} = 66\text{MHz/V @4GHz} \)
Synthesizer Design

- Loop Gain = \[
\frac{I_{CP} \cdot Z(s) \cdot K_{VCO}}{s \cdot N_{div}}
\]
where \(N_{div} = \frac{f_{VCO}}{f_{REF}} \)

\[\Rightarrow\] \(I_{CP} \) is digitally varied as \(1/f_{VCO}^2 \) for constant loop gain over tuning range.

- On-chip programmable loop filter, \(Z(s) \)
 \[\Rightarrow\] Program for 50° PM with given \(f_{REF} \)
 \[\Rightarrow\] Optimize loop BW for low integrated PN
 \[\Rightarrow\] For stability, 3rd pole of \(Z(s) \) \(\gg \) loop BW.
LO Buffer with AGC

- Inductively-tuned
- \(3.2\text{GHz} < \text{LO}_{RF5} < 4\text{GHz}\)
- Desire an LO amplitude \(\approx 1V_\text{diff}\)
- Use AGC to minimize bias current
 \(\Rightarrow 3.5\text{mA} < I_\text{tail} < 12\text{mA}\)
 over P.V.T. & freq.
5GHz TX Phase Noise

Center Frequency: 5.32GHz

-93dBc/Hz

-110dBc/Hz
Σ-Δ Modulator Noise Contribution

Center Frequency: \(\approx 5.2 \text{GHz} \)

- With \(\Sigma-\Delta \) Modulation
 - Phase Noise (dBC/Hz) decreases by 9 dB

- No Modulation

Frequency Offset (Hz)

Phase Noise (dBC/Hz)
Transmit EVM @ $P_{\text{out}} \approx -4\text{dBm}$

2.4GHz Band

- EVM (dBm): -24, -25, -26, -27, -28, -29, -30
- Channels: 2400, 2420, 2440, 2460, 2480
- EVM Spec.: 802.11g spec.
- Deviation: 2.7 dB

5GHz Band

- EVM (dBm): -24, -25, -26, -27, -28, -29, -30
- Channels: 5000, 5200, 5400, 5600, 5800, 6000
- EVM Spec.: 802.11a spec.
- Deviation: 2.2 dB
Receiver Sensitivity

2.4GHz Band

- Sensitivity (dBM) vs. Channel Frequency (MHz)
- 54 Mbps
- 6 Mbps
- 802.11g spec.
- 11dB

5GHz Band

- Sensitivity (dBM) vs. Channel Frequency (MHz)
- 54 Mbps
- 6 MHz
- 802.11a spec.
- 4dB
- 5dB
Die Photo

- Process: 0.18\textmu m CMOS with 3V I/O
- Die Size: 6.6 \times 6.7 \text{ mm}^2
- Analog Area: 13.5 \text{ mm}^2
- Packages: 216-pin BGA or CSP

Digital MAC & Baseband

ADC
BIAS
PLL
DAC
TX BB FILTER
2.4/5GHz TX RF
2.4/5GHz RX RF
RX BB FILTER
Synth
Performance Summary

<table>
<thead>
<tr>
<th>Parameter</th>
<th>2.4GHz Band</th>
<th>5GHz Band</th>
</tr>
</thead>
<tbody>
<tr>
<td>Transmit EVM at 54Mbps</td>
<td>-27.5dB@-3.5dBm</td>
<td>-28dB@-4dBm</td>
</tr>
<tr>
<td>Receiver Sensitivity for 6Mbps</td>
<td>-94dBm</td>
<td>-91dBm</td>
</tr>
<tr>
<td>Receiver Sensitivity for 54Mbps</td>
<td>-76dBm</td>
<td>-73dBm</td>
</tr>
<tr>
<td>Receiver Noise Figure</td>
<td>5.0dB</td>
<td>5.5dB</td>
</tr>
<tr>
<td>SoC Power Dissipation</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RX mode</td>
<td>424mW</td>
<td>398mW</td>
</tr>
<tr>
<td>TX mode ($P_{\text{out}}=-4\text{dBm}$)</td>
<td>380mW</td>
<td>425mW</td>
</tr>
<tr>
<td>RF Transceiver Power</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RX (excl. ADC)</td>
<td>287mW</td>
<td>267mW</td>
</tr>
<tr>
<td>TX ($P_{\text{out}}=-4\text{dBm}$, excl. DACs)</td>
<td>272mW</td>
<td>310mW</td>
</tr>
<tr>
<td>Sleep Power Dissipation</td>
<td>< 300μW</td>
<td></td>
</tr>
<tr>
<td>Technology</td>
<td>Standard 0.18μm CMOS w/ 3V I/O</td>
<td></td>
</tr>
<tr>
<td>Die Area (analog area)</td>
<td>44.6 (13.5) sq. mm</td>
<td></td>
</tr>
</tbody>
</table>
Conclusions

- Demonstrated a single-chip IEEE 802.11a/b/g SoC suitable for embedded WLAN

- Receiver sensitivity of -76dBm and -73dBm at 54Mbps for 2.4GHz and 5GHz, respectively

- Fractional-N frequency synthesis allows operation with a range of crystal frequencies

- Power management features reduce sleep and standby current
Acknowledgements

• Support of the Digital Design, Algorithms, System Test, CAD and IT groups at Atheros Communications.