26.8: A 1.9GHz Single-Chip CMOS PHS Cellphone

William W. Si, Srenik Mehta, Hirad Samavati, Manolis Terrovitis, Michael Mack, Keith Onodera, Steve Jen, Susan Luschas, Justin Hwang, Suni Mendis, David Su, Bruce Wooley

Atheros Communications, Santa Clara, California

1 Stanford University, Stanford, California
Outline

- Introduction
- Overall Architecture
- RF Transceiver
 - Synthesizer
 - Receiver
 - Transmitter
- Calibration
- Measurement Results
Integrated PHS SoC Solution

■ Personal Handy-Phone System (PHS)
 • Commercially launched in 1995
 • Resurgence in China (> 50M subscribers in 2004)

■ Single-Chip PHS Solution in 0.18μm CMOS
 • RF/Analog: RF transceiver, audio/voiceband data converters and audio amplifiers
 • Digital: PHS MODEM, TDMA, CPU, Voice subsystem, Interfaces

■ PHS System
 • TDMA/TDD - Time Domain Multiple Access / Duplexing
 • $\pi/4$ QPSK modulation with 192kHz channel bandwidth
 • 1.9GHz frequency band, 300kHz channel spacing
 • Support seamless handover \rightarrow fast channel switching
Advantages of System-on-Chip

- Low cost, small form factor with fewer external components
- Digital calibration
 - Wide digital-analog interface without package pins and associated power for I/Os
 - Digital calibration to repair analog impairments, eases requirements of analog RF circuits
Block Diagram of Single-Chip PHS Cellphone

- Power Mgmt
- PHS TDMA
- PHS MODEM
- PHS RF Transceiver
- Interfaces
- CPU
- Voice Subsystem
- Audio Amplifiers Data-Converters
- SRAM
- Flash
- LCD
- Display
- LED
- Keypad
- WLAN
- Microphone
- Earpiece
- Speaker
RF Transceiver Block Diagram

Transmitter
- XPA
- PA
- DAC
- LO

Receiver
- RF Loop back
- ADC
- LO

Channel Frequency
- 3.8GHz

Sigma Delta Fractional-N Synthesizer

\[f_{vco} = 2 \times f_{rf} \]
- weaker PA pulling
- smaller inductor
- easy quad. LO gen
Sigma-Delta Fractional-N Synthesizer

38.4MHz crystal / TCXO

Total current = 25mA
Voltage Controlled Oscillator

Regulated V_{DD} (1.8V)

7-bit control

V_c
Fast Synthesizer Settling (I)

- Seamless handover support → requires fast channel switching

Traditional approach: Use two interleaving synthesizers → power and area penalty

We use only one synthesizer with fast settling
Fast Synthesizer Settling (II)

- Tradeoff between settling time and phase noise: Loop bandwidth optimization
 - Wide loop BW for fast settling
 - Low loop BW to suppress $\Sigma\Delta$ quantization noise
 - Optimized loop BW = 120kHz

- Avoid over-design → Minimizing loop BW variation
 - $BW = (K_{vco} I_{cp} R_s) / (2\pi N)$
 - V_{ctrl} within 200mV → K_{vco} is roughly constant
 - I_{cp} tracks process variation of R_s → $I_{cp}R_s$ constant

- Loop BW dynamically adjusted during switching to speed up frequency transient response

- Resulting settling time = 15μs
Direct Conversion Receiver

Total current = 32mA
Receive Mixer and LO Buffers

Passive I/Q Mixer Using NMOS Native Devices

Common-Mode Feedback and Replica Bias

Two-Stage Inductorless LO Buffer
Direct Conversion Transmitter

Total current = 29mA

RF Loopback to RX
Segmented Power Amplifier

\[V_{\text{in}}^+ \] \quad M1 \quad M2 \quad \ldots \quad M3 \quad M4
\[V_{\text{in}}^- \] \quad b1 \quad \text{SW1} \quad \ldots \quad b4 \quad \text{SW4}

\[V_{\text{dd}} \]

\[V_{\text{out}}^+ \]

\[V_{\text{out}}^- \]
Digital Calibration and RF Loopback

- Calibration of Analog Imperfections
 - Receiver filter bandwidth
 - Receiver DC offset
 - I/Q mismatch
 - Transmitter carrier leak
Receiver Sensitivity

Channel Frequency (MHz)

Sensitivity (dBm)

Receiver Noise Figure = 3.5dB

Sensitivity = -106dBm

PHS Sensitivity Standard

9dB
Adjacent Channel Selectivity (dBc)

Channel Frequency (MHz)

Receiver Adjacent Channel Selectivity (ACS)

ACS Spec = 50dBc

PHS modulated blocker at 600kHz offset

PHS Signal -94dBm

600kHz

PHS Blocker

600kHz
Receiver 2-Tone Intermodulation

Intermod Spec = 47dBc

2 equal sized single-tone blockers at 600kHz & 1.2MHz offset

PHS Signal -94dBm

Blockers

600kHz, 1200kHz

Channel Frequency (MHz)
Transmit Spectrum

PHS standard requires OBW < 288kHz

OBW = Occupied BW containing 99% signal power

Measured OBW < 250kHz for all channels

Center 1.907GHz
Res BW 10kHz

Span 2MHz

Ref
10dBm

Log
10dB/

-10dBm
Transmitter Modulation Accuracy

Frequency: 1 906.847 373 1 MHz
Frequency Error: -2.626 9 kHz
RMS Vector Error: 3.80%
Peak Vector Error: 7.82%
Output Power: 0dBm

Frequency: 1 906.847 366 4 MHz
Frequency Error: -2.633 6 kHz
RMS Vector Error: 1.03%
Peak Vector Error: 2.50%
Output Power: -10dBm

PHS Standard requires EVM less than 12.5%
Transmit Adjacent Channel Power (ACP)

![Diagram showing Transmit Adjacent Channel Power (ACP)]

- **Spec**: 600kHz ACP
- **8dB Margin**
- **900kHz ACP**
- **PHS signal 18.5dBm with xPA**
- **>8dB Margin**
- **600kHz**

Channel Frequency (MHz):
1895, 1898, 1901, 1904, 1907, 1910, 1913, 1916, 1919
Synthesizer Phase Noise at 1895.15MHz

Phase Noise @ 600kHz = -118dBc/Hz
Measured Synthesizer Settling Time

Settling Time to 1 kHz = 15 μs
Die Micrograph
Performance Summary

<table>
<thead>
<tr>
<th>Power Dissipation</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>RF Transmitter</td>
<td>29mA</td>
<td></td>
</tr>
<tr>
<td>RF Receiver</td>
<td>32mA</td>
<td></td>
</tr>
<tr>
<td>RF Synthesizer</td>
<td>25mA</td>
<td></td>
</tr>
<tr>
<td>Talk Mode (1/8 duty cycle Tx & Rx)</td>
<td>81mA (including audio and digital)</td>
<td>1mA (including audio and digital)</td>
</tr>
<tr>
<td>Standby Mode</td>
<td>1mA</td>
<td>1mA</td>
</tr>
</tbody>
</table>

Phase Noise @ 1.9GHz	-118dBc/Hz @ 600kHz offset
Settling time to +/- 1kHz	15μs
Receive Sensitivity	-106dBm
Receiver Noise Figure	3.5dB
Transmit Power (EVM compliant)	+4 dBm
Transmit EVM	4% rms @ 1dBm
	1% rms @ -10dBm
Technology	Standard 0.18μm CMOS
Supply Voltage	3.0V with internally regulated 1.8V
Die Size:	33 mm²
RF and Analog	12 mm²
Package	276-pin BGA
Conclusions

- Demonstrated single-chip PHS cellphone in 0.18 μm standard digital CMOS
- SoC performance meets or exceeds all PHS specifications
- System on a single chip allows for digital calibration to ease requirements of analog circuits
Acknowledgments

The authors wish to acknowledge the contributions from the entire PHS team at Atheros, especially their efforts in algorithm development, digital design, and system design and verification.