20.5: A Single-chip CMOS Radio SoC for v2.1 Bluetooth Applications

David Weber, William W. Si, Shahram Abdollahi-Alibeik, MeeLan Lee, Richard Chang, Hakan Dogan, Susan Luschas, Paul Husted

Atheros Communications, Santa Clara, California
Outline

• Bluetooth Requirements
• SoC block diagram
• Frequency Plan
• Polar Transmitter and Synthesizer
• 500kHz low-IF Receiver
• Summary
Bluetooth Requirements

• Operates in ISM band (2.402 – 2.480GHz)

• Hops through 79 channels, each 1MHz bandwidth

• There are now three data rates
 ➢ Original 1Mbps rate uses GFSK modulation
 ➢ EDR (2 & 3Mbps) uses π/4-DPSK and 8-PSK modulation

• Primarily for short range communication

• Goal is to reduce power consumption and cost
Frequency Plan

• VCO operates between 4.8 and 5 GHz
 ➢ LO signals generated efficiently with divide-by-2

• For transmit, VCO operates at 2x channel frequency
 ➢ Divide-by-two block drives power amplifier

• For receive, VCO is shifted by 1MHz relative to 2x channel frequency
 ➢ Creates 500kHz low-IF receive topology
TX Architecture

• Polar architecture
 ➢ Modem divides signal into AM and FM paths
 ➢ Minimizes silicon area
 ➢ Particularly efficient for 1Mbps rate when only FM data is needed (amplitude is constant)

• AM data is added at power amplifier
 ➢ Required for 2Mbps and 3Mbps rates

• 2-point modulation for FM data
 ➢ FM data is subdivided into High Frequency (HF) and Low Frequency (LF) paths
Two-point modulation

- Allows FM path bandwidth to be wider than synthesizer loop bandwidth

Ref: R. Meyers, P. Waters, Colloquium on VLSI implementations, 1990
Synthesizer and FM modulation

- Elements in **Red** add frequency modulation path
• For 1Mb rate, PA simply amplifies Synth output
• For 2Mb and 3Mb rates, AM signal is added at PA
EDR Signals

3Mbps rate uses 8-PSK constellation

- AM dynamic range: need 26dB min → Spectral mask
- FM bandwidth: need 6.5MHz min → EVM
VCO design

- HF modulation gain must be calibrated

HF gain variation vs. process

HF data input (11-bit code)

HF gain (Hz/bit)

• HF modulation gain must be calibrated
PA design

DC current@2dBm
Switching mode: 10.1mA
Linear mode: 20mA
EVM measurement

- Transmitting 3Mbps packet (8psk) at 2dBm

- < 13% RMS DEVM
- < 25% peak DEVM
- 99% symbols
- < 20% DEVM

3Mb specification

• Transmitting 3Mbps packet (8psk) at 2dBm
TX Spectrum measurements

1Mb GFSK Spectrum (2dBm channel power) 3Mb 8PSK Spectrum (2dBm channel power)
RX architecture

• 500kHz IF optimizes area and power
 ➢ Traditional low-IF uses analog BPF → more area
 ➢ Direct conversion overlaps signal and DC offset → signal detection challenge
 ➢ 500kHz IF analog components similar to zero-IF → both area efficient and robust

• Minimal analog filtering
 ➢ ΔΣ ADC has 74dB dynamic range
 ➢ Modem removes DC offset and close-in blockers
 ➢ LPF and notch prevent ADC saturation and aliasing
RX block diagram

- Similar to zero-IF
• **Battery life is more important than range!**

 - -88dBm sensitivity @ 1Mb requires 12dB NF
 - RX signal path consumes 18.5mW
RX blocker rejection

In-Band Blocking for 1Mb/s

- No exception for image channel needed

C/I (dB)

Frequency Offset (MHz)

Bluetooth Spec
Measurements
DC Offset
measured vs. channel and process

budget <= 140mV

• Offset is quantized by ADC and removed by modem
LNA/Switch schematic

Ref: R. Chang, ISSCC 2007
Phase Noise

-87 dBc/Hz inband

-112 dBc/Hz @ 1MHz

- Affects TX spectral mask and RX blocker rejection
- Synth power consumption is 14mW
Die Photo

- 0.13um CMOS
- Standard digital process
- Analog area: 3mm²
- Total die size: 9.2mm²
- QFN 40pin package
Performance Summary

<table>
<thead>
<tr>
<th></th>
<th>This work</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>TX output power</td>
<td>2dBm</td>
<td>Class 2 operation</td>
</tr>
<tr>
<td>3Mbps Transmit DEVM</td>
<td><6%</td>
<td><13% spec</td>
</tr>
<tr>
<td>peak</td>
<td><18%</td>
<td><25% spec</td>
</tr>
<tr>
<td>Continuous TX power consumption</td>
<td>19.3mA</td>
<td>1.2V supply</td>
</tr>
<tr>
<td>(All analog/RF functions excluding PA)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PA power consumption – basic rate EDR</td>
<td>10.1mA</td>
<td>tested with 3.3V supply voltage</td>
</tr>
<tr>
<td></td>
<td>20mA</td>
<td></td>
</tr>
<tr>
<td>RX sensitivity – 1Mb (GFSK)</td>
<td>-88 dBm</td>
<td>-70dBm spec</td>
</tr>
<tr>
<td>2Mb (π/4 DPSK)</td>
<td>-90 dBm</td>
<td>for all rates</td>
</tr>
<tr>
<td>3Mb (8PSK)</td>
<td>-84 dBm</td>
<td></td>
</tr>
<tr>
<td>RX noise figure</td>
<td><12dB</td>
<td></td>
</tr>
<tr>
<td>Continuous RX power consumption</td>
<td>29.7mA</td>
<td>1.2V supply</td>
</tr>
<tr>
<td>(All analog/RF functions)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Die Area</td>
<td>9.2mm²</td>
<td>0.13um standard CMOS</td>
</tr>
<tr>
<td></td>
<td>3.0mm²</td>
<td></td>
</tr>
<tr>
<td>Technology</td>
<td></td>
<td>5x5 QFN</td>
</tr>
<tr>
<td>Package</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Conclusions

- Demonstrated a single-chip Bluetooth v2.1 SoC supporting EDR
- Polar transmitter architecture reduces area
- 500kHz IF Receiver minimizes analog filtering
- Smallest published Bluetooth SoC to date in 0.13um CMOS
Acknowledgements

An SoC requires more than a radio to succeed.

The authors gratefully acknowledge the work of the entire Bluetooth team at Atheros.

Additional thanks to Eric Dukatz, Soner Ozgur, Haitao Gan, Yashar Rajavi, and Joe Jamp for their help in preparing this paper for presentation.