POWER – PERFORMANCE OPTIMIZATION METHODS FOR DIGITAL CIRCUITS

Radu Zlatanovici
zradu@eecs.berkeley.edu
http://www.eecs.berkeley.edu/~zradu

Department of Electrical Engineering and Computer Sciences
University of California, Berkeley
If we continue doing business as usual, both dynamic and leakage power will be a problem...

...chips are getting hot...

...and phones leaky!

• Need to deliver maximum performance under power constraints

From S. Borkar, Intel
Need to reduce power by 30%, while willing to give up 3% of performance

What to do:
- Decrease supply?
- Increase thresholds?
- Downsize?
- Downsize latches or logic?
- Use dual supplies?
- Re-pipeline?
- Parallelize?
Outline

- Design as a power – performance optimization problem
- Fundamentals of circuit optimization
- Design examples
- Dealing with variations
- Conclusions

Collaborative effort:
- Students: R. Zlatanovici, D. Markovic, L.-T. Pang, J. Garrett, S. Kao
- Faculty: B. Nikolic, R. Brodersen
Power – Performance Optimization

- Initial design
- Power-optimal design
- Design within power budget

OPTIMAL POWER – PERFORMANCE TRADEOFF CURVE
Power Limited Operation

Achieve the highest performance under the power cap
Achieve the highest performance under the power cap

Power Limited Operation

Design optimization curves

Unoptimized design

Var1

P_{max}

P_{min}

D_{min}

D_{max}
Achieve the highest performance under the power cap
Power Limited Operation

How far away are we from the optimal solution?
Power Limited Operation

Global optimum – best performance

Design optimization curves

Global

Power

Delay

Unoptimized design

Var1

Var2

Var1 + Var2

P_{\text{max}}

P_{\text{min}}

D_{\text{min}}

D_{\text{max}}
Design Optimization

- There are many sets of parameters to adjust:
 - Circuit
 (sizing, supply, threshold)
 - Logic style
 (domino, static, pass-gate, ...)
 - Block topology
 (adder: CLA, CSA, RCA, ...)
 - Micro-architecture
 (parallel, pipelined)
Design Optimization

- There are many sets of parameters to adjust:
 - Circuit
 (sizing, supply, threshold)
 - Logic style
 (domino, static, pass-gate, ...)
 - Block topology
 (adder: CLA, CSA, RCA, ...)
 - Micro-architecture
 (parallel, pipelined)

Globally optimal boundary curve: pieces of E-D curves for different topologies
Outline

- Design as a power – performance optimization problem
- Fundamentals of circuit optimization
- Design examples
- Dealing with variations
- Conclusions
Optimization Problem

\[\min_{x \in \mathbb{R}^n} f(x) \]

subject to

\[g_i(x) \leq 0 \quad i = 1..m \]

\[h_j(x) = 0 \quad j = 1..p \]

- Very difficult in the general case
- Optimality not guaranteed

Convex Optimization

- \(f, g_i \) – convex, \(h_j \) – linear
- Key property: every local minimum is a global minimum
- Optimality guaranteed
Circuit Optimization

- Plug-ins
- Models
- Netlist
- Optimization Goal
- Variables

Optimization Core

- Static timer (C++)
- Cycle time, Power

Optimizer (Matlab)

- Design Variables

Results

Optimal Design
Power Constrained Optimization Problem

Minimize DELAY
subject to
Maximum POWER

Constraints:
- Maximum output slew
- Maximum internal slew
- Maximum input capacitance
- Minimum sizes

Basic Result:
- Power - Performance tradeoff curve
ALL P-D METRICS ARE INCLUDED IN THE TRADEOFF CURVE
Choice of Models

ANALYTICAL
- Limited accuracy
+ Fast parameter extraction
+ Provide insight in the operation of the circuit
+ Can exploit their mathematical properties to help optimization
 ➔ Target: convex optimization

TABULATED
+ Very accurate
- Slow to generate
- No insight in the operation of the circuit
- Can’t guarantee convexity
- Optimization is “blind”

☞ If convex models are any good, the optimization problem is not very “non-convex”
Logical Effort: Delay of a Logic Path

\[t_D = p + g \cdot \frac{C_L}{C_{in}} \]
\[C_{in} = g \cdot C_{inv} \cdot W \]

\[b = \frac{C_{on-path} + C_{off-path}}{C_{on-path}} \]

\[D = \sum_{i=1}^{N} p_i + g_i \cdot \frac{C_{load,i}}{C_{in,i}} = \sum_{i=1}^{N} p_i + \sum_{i=1}^{N} g_i \cdot \frac{b_i g_{i+1}}{g_i W_i} \]
Posynomial Functions

Definition of a posynomial:

\[p(x) = \sum_j \gamma_j \prod_{i=1}^n x_i^{\alpha_{ij}} \quad \alpha_{ij} \in \mathbb{R} \quad \gamma_j \in \mathbb{R}^+ \]

A posynomial can be converted to a convex function using a simple change of variables: \(x_i = e^{Z_i} \) for \(x_i \geq 0 \)

Logical effort delay is posynomial

- Fishburn, ICCAD ’85: Elmore delay formula can be written as a posynomial

Switching energy is linear in \(W_i \) → posynomial

Convex optimization with posynomials is called geometric programming
V\textsubscript{DD}- Dependent Analytical Delay Model

- Gate equivalent resistance can be computed from analytical saturation current models (a reduced form of the BSIM3v3 equation)

\[R_{EQ} = \frac{1}{V_{DD}/2} \int_{V_{DD}/2}^{V_{DD}} \frac{V_{DS} dV_{DS}}{I_{DSAT}} = \frac{3}{4} \frac{V_{DD}}{W \cdot K (V_{DD} - V_{TH})^2} \left(1 - \frac{7V_{DD}}{9V_A}\right) \]

- Include supply and threshold dependency in the delay model:

\[d = c_2 R_{EQ}(W, V_{DD}, V_{TH}) + c_1 R_{EQ}(W, V_{DD}, V_{TH}) \cdot \frac{C_L}{C_{in}} + (\eta_0 + \eta_1 V_{DD}) t_{s,in} \]

- Accurate over a **reasonable yet limited** range of fanouts (2.5-6), supplies and threshold (+/- 30%)

 - Most datapath blocks are within this range

- **Compatible with convex optimization**

 - Captures dependencies on V\textsubscript{DD} and V\textsubscript{TH} \(\Rightarrow\) they can be optimization variables

Work by Joshua Garrett
Vdd and W Optimization
Outline

- Design as a power – performance optimization problem
- Fundamentals of circuit optimization
- Design examples
- Dealing with variations
- Conclusions
Dual V_{DD} ALU in Domino Logic

ISSCC'03, JSSC 03/2004
Extending the Space: Dual Supply

- $V_{DDH} = V_{DDL}$
- $V_{DDH} = 2.0$
- $V_{DDH} = 1.8$
- $V_{DDH} = 1.6$

Energy [pJ]

- V_{DPL} decreases.

Room temp.

T_{CYCLE} [ns]

- 0.6
- 0.8
- 1.0
- 1.2
- 1.4
- 1.6

Figure: Dual supply voltage levels and their impact on energy consumption and cycle time. The graph shows the energy consumption in pJ as a function of cycle time (T_{CYCLE}) for different supply voltages (V_{DDH}) compared to the difference (V_{DPL}). The data points illustrate that decreasing V_{DDH} leads to a decrease in energy consumption, with the highest energy savings observed at lower supply voltages.
CLA Adders in E-D Space

- Adders are common in critical paths
- CLA adders:
 - Many designs, commonly used in practice
 - Recent interest in sparse adders
 - No fair comparison in energy – delay space
- This work:
 - Optimization of representative 64-bit adders in energy – delay space
 - Optimal 64-bit adder design

64-Bit CLA Adders

- Generic 64-bit adder block diagram

- Classical CLA, Ling equations
- Static, single-rail domino, compound domino logic
- Radix-2 and radix-4 carry trees
- Full and sparse trees (sparseness of 2 and 4)
- Use tabulated delay and analytical energy models (switching, leakage)
Ling adders achieve shorter delays
Radix-4 are faster than radix-2
Choosing a Logic Style

- Static adders are low power but slow.
- Domino logic is the choice for short cycle times.

![Graph showing energy vs. delay for different logic styles: Static R2, Domino R4, Domino R2, Compound Domino R2.](image-url)
Full vs. Sparse Trees

Sparse trees:

- Heavier load on the carry tree
- Reduced input loading
- More complex sum precompute gates
Proof of Existence: Fastest Adder

- Radix-4 sparse-2 domino Ling adder
- Technology:
 - 90 nm 1P 7M
 - $V_{DD} = 1$ V
- Performance:
 - Delay: 210 ps (post – layout simulation)
 - Energy: 9.1 pJ / cycle (optimization tool)
- Core dimensions: $417.3 \, \mu m \times 75.3 \, \mu m$
- Chip to be taped out 11/1/04

*with Sean Kao
Micro-Architecture Optimization: Power4 FPU

- 5 cycles
- 2-phase clocking
- Static CMOS
Optimizing Pipelined Circuits

- Models: Polynomials
- Block Level Netlist
- Minimize T_{CYCLE} Subject to Maximum ENERGY
- Gate Sizes Latch Positions

Cycle boundaries: transparent latches

COMBINATIONAL LOGIC

- Fix pipeline depth
- Find shortest cycle time for fixed cutset
- Search for optimum cutset

Optimal Pipeline Configuration

Work in progress…
Outline

- Design as a power – performance optimization problem
- Fundamentals of circuit optimization
- Design examples
- Dealing with variations
- Conclusions
Robust Optimization

- Parameters are within an **ellipsoid** centered on the nominal values
- Optimize the **worst case**

- Compatible with convex optimization for the presented analytical models
- Problem: computing the ellipsoid
Stochastic Optimization for Yield

- Parameters are random variables centered on the nominal values
- Optimize for a desired yield

$$\min_{x \in \mathbb{R}^n} f(x)$$
subject to
$$g_i(x) \leq 0 \quad i = 1..m$$

$$\min_{x \in \mathbb{R}^n} f(x)$$
subject to
$$P(g_i(x) \leq 0, \quad i = 1..m) \geq \eta$$

- Compatible with convex optimization under certain conditions
 - Convex analytical models
 - Jointly Gaussian parameters
- Problem: finding the distributions of the parameters, especially the correlations
Impact of Layout on Variations

- Stacked gates vs. non-stacked gates (e.g. gates vs. buffers)
- Proximity effects, orientation of gates, metal layer above gate (annealing)

Work by Liang – Teck Pang
Test Chip

- 90nm 1P 7M
- $V_{DD} = 1$ V
- 1.55 x 1.17 mm2
- Taped out 9/04
- To be packaged and tested
- Measurements will provide statistical data for the stochastic optimizer
Conclusions

Power and performance are the two sides of the same coin. The connection: the **power – performance tradeoff curve**.

- Built a suite of stackable tools to design “**power – performance optimal circuits**”
- **Design space explorations:**
 - Different optimization variables
 - Various levels of abstraction
 - Impact of variations
- **Experimented the tool suite on various designs**
 - Dual-supply ALU
 - CLA Adders in the E-D space