<u>**Trends in Active Power Filters</u>**</u>

Dr. Mohamed Darwish Brunel University

Normal Operating Conditions

Non-linear Operating Conditions

<u>Source of Power System</u>

<u>Harmonics</u>

- Large Sources
 - -Arc-furnaces
 - -Megawatts sized adjustable-speed-drive (ASD) systems
 - -Static converters
 - -Transformer magnetisation non-linearities
- Small sources
 - -TV sets
 - -Computer equipments
 - -Fluorescent and other discharge lighting

A Typical Computer Load Current

<u>A Typical Computer Load Current in</u>

<u>Sleep Mode</u>

Voltage Harmonics in Residential Areas

<u>Example of total harmonic distortion</u> <u>caused by a typical residential home</u>

<u>How to Eliminate Harmonics</u>

- Preventing harmonic generation for newer systems
 - -High input power factor regulators
 - -Switching regulators
 - -High pulse number AC/DC converters
- For existing sources of harmonics – Installing filters on DC side of rectifier – Installing filters on AC side

Need for Filters

- Eliminate / Reduce harmonics in voltage & current waveforms.
- Improve power factor.
- Reduce harmonic power losses.
 Combinations of the above.

Available Filter Configurations Shunt Scries configuration Configuration

- Provides a low impedance path to ground
- Does not necessitate a series filter

- Provides a high series impedance path
- Must work in conjunction with a shunt filter

- Use L C tuned components
- Tuned for the undesired harmonics

- **×** Uncharacteristic Harmonics
- × Higher Cost
- × Bulky
- Depend on System
 impedance

<u>Advantages of Passive Filters</u>

- Reliable operation
- Easy design procedure
- Act as reactive power compensators
- Cheap configurations per harmonic

<u>Disadvantages of Passive Filters</u>

- Large number of components
- Bulky
- Depend on system impedance
- Tuned for a certain loading condition
- Parallel and series resonance may occur for certain harmonics
- Affected by capacitor ageing

- Use active switching components
- Only one filter needed to eliminate all the unwanted harmonics
- Used for power factor correction

<u>Classification of Active Filters</u>

• Active Filters attached to Large Single-Source Offenders

• Active Filters for 'Retrofit' Applications

Analogy Between Harmonic Pollution

and Air Pollution Sources

SOURCES	HARMONIC POLLUTION	AIR POLLUTION
UNIDENTIFIED	 TV sets and PCs Small electronic loads 	 Gasoline-fuelled vehicles Diesel powered vehicles
<i>IDENTIFIED</i>	 Bulk rectifiers Cycloconverters arc-furnaces 	 Chemical Plants Coal/oil steam power stations

3rd Current Harmonic Injection Method by Bird, Marsh, and Mclellan (1969)

<u>Active Filters for Retrofit</u> <u>Applications</u>

- Active Filters based on voltage-fed inverter.
- Active Filters based on current-fed inverter

• Variable Characteristics Filters

Basic Idea of Active Filters Low Pass Filter XD

<u>Typical Active Filter Circuit</u>

Active filters on Commercial Basis

Objective	Rating	Switching Devices	Applications
Harmonic compensation with or without reactive power compensation	below 100KVA	IGBT MOSFETS IGCT	Diode or thyristor rectifiers and cycloconverters for industry
Flicker compensation	100VA ~ 10 MVA	GTO IGBT	Arc furnaces
Voltage regulation	above 10MVA	GTO	Sinkansen (the Japanese "bullet" trains)

Current-Fed Inverter Filter

Voltage-Fed Inverter Filter

<u>Disadvantages of Inverter</u> <u>Filters</u>

- High tracking switching frequency particularly at zero crossing.
- •Large reservoir capacitor (in voltage source inverters).
- Difficulties in keeping voltages constant on dc-link capacitor.

New Configurations

- Reactive Power Compensation.
- Switched-Capacitor SC side Filters.
- Variable Characteristics DC Filters
- Lattice Structure Filters
- Voltage Regulator Configuration
- Active/Passive Filter combinations.
- & Others . . .

Switched-Capacitor Techniques

Lattice Structures

Voltage Regulator Filters

Active Filter with R-L Load

Active Filter with R-L Load

Active Filter with R-C Load

<u>Active Filter with R-C Load</u>

<u>Typical Active Filter Circuit</u>

Control of Active Filters using Wavelet Transform

Active filtering of the variable harmonic contents of an arc furnace current

Active filtering of several disturbances such as: spikes, notches, transient responses, harmonics of several orders etc.

New Ideas for Control

- •DSPs
- Genetic Algorithms
- •Adaptive Controllers
- Fuzzy Logic Controllers
- Neural Networks
- & Many others

<u>Advantages of Active Filters</u>

- Lower switching frequency
- Smaller sizes of components
- Cheaper solutions
- •Basis for future improvements

<u>Future Control Strategies for</u> <u>Active Filters Using ANN</u>

BRUNEL

- Passive Filters
- Active Filters & Reactive Power Controllers
 - Large Offenders
 - Retrofit Applications
 - AI ? (NeuraLogix's NLX420 Neural Processor Slice)
- Devices ?
- Control ?
- Availability & Cost ?
- Regulations & Standards ?

