
IEEE Canadian Review - Spring / Printemps 2003 13

Neural Engineering: Unraveling The Complexities Of Neural Systems

L'incroyable, souvent subtile complexité des systèmes neuronaux
semble être le cauchemar de l'ingénieur. Mais quand on examine
ces systèmes soigneusement, ils peuvent devenir le rêve de
l'ingénieur - un moyen pour étudier des systèmes robustes et com-
plexes. En utilisant des techniques de la théorie de l'information,
théorie du contrôle, et l'analyse des signaux et systèmes, il est pos-
sible de formuler un cadre pour construire de grandes et
biologiquement plausibles simulations de systèmes neuronaux. Ces
simulations nous aident à apprendre comment fonctionnent les
systèmes neuronaux sous-jacent et comment obtenir de bonnes
solutions aux complexes problèmes faisant face à ces systèmes.

The incredible and often subtle complexity of neural systems may
seem like an engineer's nightmare. But, when we examine such
systems carefully, they can turn out to be an engineer's dream - a
way to learn about robust, complex systems. Using techniques
from information theory, control theory, and signals and systems
analysis, it is possible to formulate a framework for constructing
large-scale, biologically plausible simulations of neural systems.
Such simulations help us learn both about how the underlying neu-
ral systems work, and about good solutions to the problems faced
by such systems.
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1.0 An engineering approach to neuroscience
ecently, several leaders in neuroscientific research have
made independent calls for the development of a theoretical
framework that can help unify the field [1]. Such a frame-
work, it is hoped, can provide structure to the chaotic
landscape of experimental and theoretical results in contem-

porary neuroscience. Essentially, these neuroscientists have come to the
realization that neuroscience is 'data rich, but theory poor.' That is, gen-
erating results regarding neural systems, their components, and their
behaviour has become routine. But, there is no established method for
integrating such results into a consistent, informative theory of neural
systems. As a result, it is difficult to make predictions regarding such
systems, and to determine what the most needed experiments on a neu-
ral system are.

There are reasons to think that engineering is not going to help provide
such a unifying framework. This is because engineers typically deal
with systems composed of identical, well-characterized, sparsely inter-
connected, and often digital parts. None of these constraints apply to
neural systems. Neurons are wildly diverse in size (10-4-5 m), transmis-
sion speed (2-400 km/h), response curves (orders of magnitude gain for
the same stimuli), connectivity (500-200,000 inputs), and temporal
dynamics (5-100 ms for synapses alone). But, of course, engineers do
not have to focus on digital, identical component systems.

In this article, I briefly describe the results of work that I have been
doing with Charles H. Anderson from Washington University School of
Medicine. We attempt to show how the complexities of neural systems
can be systemmatically understood using quantitative tools standard in
engineering. A more comprehensive discussion can be found in our
recent book Neural engineering: Computation, representation, and
dynamics in neurobiological systems [2].

2.0 Three principles of neural engineering
Our research has built on the important contributions of a number of
others to understanding neural coding and dynamics [3-6]. Our contri-
bution has been to synthesize these results, extend them to characterize
neural computation, and incorporate them into a neurally-relevant ver-
sion of control theory. The resulting framework is effectively
summarized by the following three principles:

1. Neural representations are defined by the combination of nonlinear
encoding (exemplified by neuron tuning curves, and neural spiking)
and weighted linear decoding (over populations of neurons and over
time).

2. Transformations of neural representations are functions of the vari-
ables represented by neural populations. Transformations are deter-
mined using an alternately weighted linear decoding.

3. Neural dynamics are characterized by considering neural represen-
tations as control theoretic state variables. Thus, the dynamics of
neurobiological systems can be analyzed using control theory.

In addition to these main principles, we take the following addendum to
be important for analyzing neural systems:

• Neural systems are subject to significant amounts of noise. There-
fore, any analysis of such systems must account for the effects of
noise.

I do not discuss the addendum in detail here, but it is important to note
how central it is for properly characterizing real-world, biological sys-
tems. Let us consider each of the main principles in more detail.

R

2.1 Principle 1 - Representation

There are two obvious nonlinearities in neural systems. The first is the
neural action potential. This is a rapid, stereotypical depolarization of the
neuron that results when the current in the cell body goes over some
threshold. These neural ‘spikes’ effectively convert an analog voltage
inside the cell body into a series of delta-function like responses (creat-
ing a ‘spike train’) that are then sent down the axon to subsequent cells.
Despite this highly nonlinear temporal encoding, it has been shown that
about 95% of the information carried by the action potentials can be
recovered using an optimal linear filter (i.e., a first-order Weiner filter)
[6].

The second nonlinearity in neural systems is evident in the neuron
response function. This function describes the increase in spike rate as a
function of input voltage to the cell body. While these functions are gen-
erally monotonically increasing, they go to zero abruptly
(mathematically a singularity) and saturate. It would be very difficult to
encode a stimulus with one such response function. However, neurons
generally work in concert to encode any given stimulus. That is, differ-
ent neurons are sensitive to over-lapping but non-identical parts of the
stimulus space. As a result, different neurons provide different, though
partially redundant information regarding a stimulus (i.e., the neurons
form an overcomplete encoding of the stimulus space). As a result, we
can show that the optimal linear population filter provides a good decod-
ing, whose error decreases at a rate of 1/(Number of Neurons), even
under noise.

As is well-known from information theory, to properly define a code we
must specify both an encoding and decoding. Given the above character-
izations of neural responses, we can define such a code over both time
and populations of neurons. Mathematically, we can express the follow-
ing ‘population-temporal’ code:
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where  is the spike train resulting from  which

defines the (spiking) neuron response function,  are encoders (or ‘pre-

ferred’ stimulus) vectors observable in neurons, and    are the
product of the linear population decoders and the temporal filter, giving
a combined ‘population-temporal filter.’ 

2.2 Principle 2 - Transformation

In order to make these neural representations useful, we need to be able
to define transformations of these representations (i.e. functions of the
encoded variables). In fact, this turns out to be rather straightforward:
rather than finding the optimal representational decoders (i.e., those that
extract the original variable from the information encoded by the neural
spikes), we can find optimal transformational decoders to extract some
function of the encoded variable from those spikes:

 

These decoders,  , tell us  how to implement computations using

biologically plausible networks. Notably, both linear and nonlinear
functions of the encoded variable can be computed in this manner. In
fact, we can use this approach to determine precisely what set of func-
tions can be computed with this linear decoding given a particular
population of neurons (i.e. neurons with a particular distribution of non-
linear tuning curves). This can be extremely useful for limiting the set
of possible functions a given neural population can compute.

2.3 Principle 3 - Dynamics

Traditional approaches to artificial intelligence, including work on arti-
ficial neural networks, have often been criticized for ignoring the
importance of temporal constraints for determining successful behav-
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iour. In the biological world, not performing certain behaviours (i.e.,
computing certain functions) fast enough can mean the difference
between life and death. As a result, many contemporary approaches to
modeling cognitive systems have elevated dynamics to be of as much
importance as representation and computation when trying to under-
stand neural systems.

Adopting this philosophy, we have integrated our characterization of
representation and transformation with modern control theory. Control
theory is the engineer's tool for describing the dynamics of physical sys-
tems and is thus a natural choice for describing neural dynamics. Our
central suggestion, which makes the marriage between standard control
theory and our description of neural systems possible, is that the vari-
ables represented by a neural population are control theoretic state
variables.

However, we must do some work to show how this can occur. Standard
control theory takes the basic transfer function to be integration. How-
ever, neural systems do not perform integration easily, but have their
own intrinsic dynamics. Fortunately, we can show that the dynamics of
the post-synaptic current (PSC) which results in the dendrite of a neu-
ron that receives a spike is likely to dominate the dynamics of the
cellular response as a whole. As a result, it is reasonable to characterize
the dynamics of neural populations based on synaptic dynamics.
Assuming a simple but plausible model for synaptic dynamics, we can
effect a ‘translation’ between traditional control theory and a 'neural'
control theory1.

For example, in the linear case, the dynamics of a standard control
structure are written as: 

where x(t) is the vector of state variables, u(t) is an input or control sig-
nal, and A and B determine the dynamics. In the neural case, assuming
our simple PSC model, we can find two neural dynamics matrices: 

 

Importantly, using these new matrices results in the same dynamics in a
neural system A and B did in the standard control system. This means
that all of the tools of control theory, including known control struc-
tures, stability analyses, and so on, can be brought to bear on
understanding neural systems.

To complete the synthesis, we can now embed this description of the

(4)x(t) = Ax(t) + Bu(t)
.

(5)A' =  τA + I
B' =  τB
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Figure 1: A generic neural sub-
system. The labels provide a
qualitative description of the
function of each of the interior
elements (defined in equations
(1)-(4)). See text for further
discussion.

1: Specifically, we assume  where τ is the synaptic time constant. More accurate
models of PSC generation can be used, but this one makes the analysis more tractable.
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dynamics of a neural representation directly into our characterization of
neural encoding in equation (1). This results in the following general,
quantitative description of neural spiking:

where hi (t) is our PSC model. The functions needed to implement such
a neurally embedded control system can, of course, be implemented
using principle 2.

2.4 Synthesis - A generic neural subsystem

These three principles quite clearly come together in equation (6). The
result can be expressed as defining the ‘generic neural subsystem’
shown in Figure 1.

In this figure, the interior dotted line indicates the higher-level descrip-
tion of the overall neural dynamics. Separating out these elements can
be practically useful because it allows for a computationally cheap
means of characterizing the system's behaviour. The exterior dotted line
bounds elements usually referred to in a description of neural function:
i.e., spikes impact dendrites that give rise to PSCs weighted by a synap-
tic weight whose effects at the cell body result in the generation of
outgoing spikes. The grey boxes indicate the elements that we can now
quantify given these principles. Most importantly, we can determine the
synaptic connection weights that need to connect this population to its
predecessors in order to exhibit the desired high-level behaviour. This
alleviates the need for (though does not exclude the possibility of)
including learning in constructing neurally plausible simulations.

3.0 Discussion
Taken together, these three principles can serve to direct the construc-
tion of large-scale, biologically plausible simulations. This is no more
evident than in the numerous simulations we have constructed. Here is a
brief description of three:

1. Vestibular system (sensory): This is a large-scale, spiking neuron
model that solves a nonlinear control problem: namely, estimating
inertial acceleration given linear acceleration (from the otolith
organs) and angular velocity (from the semi-circular canals). The
model maps well to known vestibular nucleus physiology, and pro-
vides predictions regarding the distribution of receptors and tuning
curves in the relevant neural populations.

2. Working memory (cognitive): This recurrent spiking model
accounts for two phenomena previously observed but that remained
unexplained by simulations (parametric variation and multiple tar-
get representation in working memory). It simulates parts of the lat-
eral intraparietal cortex, involved in remembering the location of
external targets.

3. Lamprey swimming (motor): This spiking model demonstrates the
synthesis of top-down and bottom-up data in a model. The result is
a novel model that guarantees certain high-level behavior (e.g.
swimming stability over a range of frequencies), unlike past mod-
els.

In addition, these principles help to unify several central concepts in
neuroscience - going some way to systematizing neuroscientific results.
For instance, principle 1 unifies population and temporal representation
in neural systems via the definition of a population-temporal decoder.
As well, principles 1 and 2 taken together provide a unified character-
ization of representation and transformation (or computation) as optimal
linear decoding. Considering all three principles together, we can see
how this approach can be used to unify top-down and bottom-up evi-
dence on a single neural system. High-level hypotheses, which inform
the control theoretic description of the overall system is integrated with
the evidence regarding individual neurons, such as tuning curves and
response properties.

As well, the principles are general. While I have here characterized the
principles in terms of vector representation, there are equivalent charac-
terizations for scalar and function representations, and their
combinations (e.g., vector fields). As well, the characterization general-
izes over modeling assumptions made regarding individual neuron
behavior (i.e., how neural spikes are generated), transformations (i.e.,
linear and nonlinear), and dynamics (i.e., time invariant, time varying,
linear, nonlinear, or stochastic control).

4.0 Conclusion
While we hope that these principles can provide some needed structure
to the many results being generated by neuroscientists, we are careful to
remind others (and ourselves) that this is, at best, a 'first guess.' How-
ever, because there are not a lot of other theories of this kind on offer,
and because a first guess paves the way for better guesses, we think that
this framework can play a valuable role in the development of neuro-
science. We have greatly benefitted from adopting this view because of
the new and important issues and insights it has generated regarding the
organization of neural systems. Many of the seeming complexities of
neural behaviour (e.g., the heterogeneity of neural responses) become
expected once we understand these behaviours as a certain kind of neu-
ral representation. Of course, many such questions remain unanswered,
but we, and others, have found this framework useful for determining
which questions are most worth asking.
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