Um Algoritmo de Filtragem Colaborativa Baseado em Memória para a Recomendação de Serviços Web Semânticos (A Memory-based Collaborative Filtering Algorithm for Recommending Semantic Web Services)

Juan Manuel Adán Coello (juan@puc-campinas.edu.br)2, Yang Yuming (lyonbrcn@gmail.com)1, Carlos Miguel Tobar (tobar@puc-campinas.edu.br)2


1Ci&T
2Pontifícia Universidade Católica de Campinas

This paper appears in: Revista IEEE América Latina

Publication Date: March 2013
Volume: 11,   Issue: 2 
ISSN: 1548-0992


Abstract:
This paper focuses on the construction of collaborative filtering (CF) recommender systems for Web services. The main contribution of the proposed approach is to reduce the problems caused by sparse rating data - one of the main shortcomings of memory-base CF algorithms - using semantic markup of Web services. In the presented algorithm, the similarity between users is computed using the Pearson correlation coefficient, extended to consider also the ratings of users for similarity services. Likewise, to predict the rating a user would give to a target service, the algorithm considers the ratings of neighbor users for the target service and also for similar services. Experiments conducted to evaluate the algorithm show that our approach has a significant impact on the accuracy of the algorithm, particularly when rating data are sparse.

Index Terms:
Semantic Web Services, Collaborative Filtering, Pearson Correlation Coefficient, Service Similarity   


Documents that cite this document
This function is not implemented yet.


[PDF Full-Text (256)]