Predicción 3-D de Velocidades para el Ecuador mediante una Red Neuronal Artificial RBF (Prediction 3-D Velocity for Ecuador by Artificial Neural Network RBF)

Alfonso Rodrigo Tierra (artierra@espe.edu.ec)1


1Universidad de las Fuerzas Armadas ESPE

This paper appears in: Revista IEEE América Latina

Publication Date: Jan. 2016
Volume: 14,   Issue: 1 
ISSN: 1548-0992


Abstract:
At present time, Ecuador has a velocity field, but it does not have an interpolation method to calculate the velocities in other points. This study presents a strategy to interpolate the velocities trough the Artificial Neural Network ‑ ANN with a Radial Basis Functions (RBF) type. To exercise this purpose we have used an available dataset in which the geocentric Cartesian coordinates (X,Y,Z) and their velocities (Vx,Vy,Vz) were known. These data were divided in three groups: The first group has been used to training phase; the second group to determinate the capacity of learning of the RBF; and lastly the third group to evaluate of generalization of the RBF by predicting the velocities in these points. In the same manner, we proceeded with the interpolation by using model velocities VEMOS09. Finally, in the test points the velocities differences were calculated, both RBF network as well as those of the VEMOS09. The results obtained demonstrate that interpolation can be better obtained by using a RBF network rather than VEMOS09.

Index Terms:
Artificial Neural Network, Radial Basis Functions, VEMOS09, Velocities   


Documents that cite this document
This function is not implemented yet.


[PDF Full-Text (345)]