Uma Abordagem Evolucionária para Teste de Consultas SQL utilizando Análise de Mutantes (An Evolutionary Approach to Test SELECT SQL Statements using Mutation Analysis)

Ana C. Monção (anaclaudia@inf.ufg.br)1, Celso G. Camilo Júnior (celso@inf.ufg.br)1, Leonardo T. Queiroz (leonardo.queiroz@gmail.com)1, Cássio L. Rodrigues (cassio@inf.ufg.br)1, Allysson Allex Araújo (allysson.araujo@crateus.ufc.br)2, Auri M. Vincenzi (auri@dc.ufscar.br)3, Plínio S. Leitão Júnior (plinio@inf.ufg.br)1, Altino Dantas Basílio Neto (altino.dantas@uece.br)4, Jerffeson Teixeira de Souza (jerffeson.souza@uece.br)4


1Universidade Federal de Goiás
2Universidade Federal do Ceará
3Universidade Federal de São Carlos
4Universidade Estadual do Ceará

This paper appears in: Revista IEEE América Latina

Publication Date: June 2017
Volume: 15,   Issue: 6 
ISSN: 1548-0992


Abstract:
This paper proposes combining the mutation testing technique with evolutionary computing to improve the test data applied to SELECT instructions. From a heuristic perspective, this approach uses Genetic Algorithms to optimize tuples selection from an original database. In other words, generating a smaller amount of tuples able to detect faults in the instructions. Mutants are analyzed to evaluate each set of data tests selected during the evolutionary process. Once the appropriate reduced database was found, it can be used whenever the SQL statement test is necessary. The experimental results indicate that the metaheuristics outperform random methods and reach, in average, 80.3% of the optimal value.

Index Terms:
Genetic Algorithm, Mutation Analysis, SQL Statements, Search-Based Software Testing   


Documents that cite this document
This function is not implemented yet.


[PDF Full-Text (435)]