Calendario de Eventos
Del Director
Noticias de las Secciones
Nuestros Comentarios
Vida en Línea
Comité Ejecutivo

Presidente del Consejo de Ex Directores Regionales
Juan Carlos Miguez (Uruguay)
j.miguez@ieee.org

Brazil Council Chair
Luis E. Crvulveli B. (Brazil)
lecb@ieee.org

Central America and Panama Council Chair
Gilberto Espinoza (Honduras)
digiliza@video.intertel.hn

Mexican Council
Florencio Aboytes
faboytes@cte.gob.mx

Presidencias de Secciones

Latinoamérica - Regin 9

México
Darío Fernández
dferna ndez@imeex.net

Guadalajara
Rodrigo Buitrago
go@ ieee.org

Honduras
Rafael Chaverria
tchaverri@ieee.org

El Salvador
Ricardo Sánchez
guatemala@iet.ac.mex

Nicaragua
Andrés García
agarcia@iee.org

Costa Rica
Gerardo Barcés
f.garcia@ieee.org

Panamá
Rómulo Altamiranda
r.altamiranda@ieee.org

Puerto Rico Oeste
Manuel Silva
es3cal@caribe.net

Puerto Rico y Caribe
Juan Ramón Vázquez
j.falcon@i eee.org

Colombia
Fernando Arias
ra@cepedes.edu.co

Ecuador
Rafael Rua
rruis@eeq. com.ec

Bolivia
Javier Lucero
vicente@huayna.unmsa. edu.bo

Perú
Enrique Alvarez
es.alvarez@ ieee.org

 Aguascalientes
Jorge Llamas
jjllamas@Response. ita.mx

Centro Occidental
José de Jesús Moreno R.
mmoreno@ieee.org

Guatemala
Javier Magaña H.
jmagana@iee.org

México
Juan Jesús García
j.garcia@IEEE.org

Monterrey
Salvador Asch-Daza
aschdaza@hotmail.com

México
Ricardo R. del Busto
ramos@ieee.org

Salvadoreno
Mario Lobo Neto
mlobo@lis.usp.br

Chile
Gonzalo Larran H.
glarran@ucv.cl

Argentina
Ricardo Vega
vega@ieee.org

Bahía
Israel de la Plata
iplata@IEEE.org

Argentina
Ricardo Vega
vega@IEEE.org

Uruguay
Jorge Fernández Daher
j.daher@IEEE.org

Venezuela
Juan Bermúdez
j.bermudez@IEEE.org

Estimados En esta, la nueva edición, de nuestro NoticIEEero hemos colegas querido darle una nueva imagen, como podrán observar, hemos creado dos nuevas columnas, noticias de Secciones en la cual se da un vistazo de las actividades más relevantes que han realizado las Secciones y AprendEEEno, columna que busca como objetivo principal resolver las interrogantes que tengan los miembros sobre cualquier tema del IEEE.

El esfuerzo realizado para producir este documento con cierto grado de calidad, en esta, nuestra primera experiencia, ha sido grande de trabajo y gran satisfacción, pero la satisfacción sería mayor si para los números siguientes logramos, entre todos, aportar más noticiales y artículos de nuestras secciones ya que el fin primordial que persigue el NoticIEEero es el promover las actividades de toda la región.

Esperamos que esta primera edición del NoticIEEero del 2001 sea de su agrado y que no duden de hacer las recomendaciones que estimen convenientes para el mejoramiento del mismo. Recuerden el NoticIEEero es de todos nosotros.

Las Palabras del Director

Quiero tocar un tema que considero muy importante y que es relevante para el IEEE mundial y su futuro. Esto es el mayor reto que enfrenta el IEEE. Además, entiendo que el mismo puede aplicarse a las empresas que dirigen o a las empresas en que trabajan.

Me refiero a la Competencia, más bien a cómo mantener la Ventaja Competitiva.

El IEEE por muchos años ha estado en un campo donde no existía la competencia. Hoy, eso mismo es, decir, pequeñas sociedades profesionales que no podían competir con el tamaño y capacidad del IEEE.

Recién a surgido lo que, Andy Grove (presidente de la Junta de Gobierno de Intel) ha llamado como "strategic inflection point" que en su definición es: lo que sucede a un negocio cuando hay un cambio grande en su ambiente natural de competencia.

El "strategic inflection point" no es otra cosa que cuando es evidente, que de momento, la compañía o sociedad profesional, la cual nos preocupa como competencia ha cambiado. (Engineering Management Review, 2nd Quarter 2000).

Continúa en la página 13

Pedro Ray
Director Regional
p. ray@ieee.org
Noticias de las Secciones

Perú

Instauran premio ELEKTRON en Ingeniería

Para el reconocimiento de aquellos profesionales cuyas contribuciones en el campo de la Electricidad, la Electrónica o las Ciencias de la Computación han significado un aporte de gran impacto en la sociedad peruana.

Con el objeto de fomentar y promover el desarrollo de la Ingeniería como ciencia y como tecnología, el IEEE (The Institute of Electrical and Electronics Engineers) y la AEP (Asociación Electrotécnica Peruana) han creado el Premio ELEKTRON para reconocer a los profesionales cuyas contribuciones en los campos de la Electricidad, la Electrónica o las Ciencias de la Computación han significado un aporte de gran impacto para la sociedad peruana. De esta manera se pretende premiar y reconocer a los profesionales que con espíritu innovador han desarrollado tecnologías y las han aplicado al mejoramiento de nuestro nivel y calidad de vida.

El Premio ELEKTRON es administrado por la Sección-Perú del IEEE (Instituto de Ingenieros Electricistas y Electrónicos) y la AEP, y cuenta con la participación del Consejo de Premios y Reconocimientos del IEEE a nivel mundial. El Premio se entregará en ceremonia de inauguración del Congreso Internacional INTERCON 2001 en la ciudad de Piura, el 7 de agosto del 2001. El plazo para la inscripción de candidatos para Premio IEEE-AEP vence el 31 de mayo de 2001. Este premio es desarrollado con la participación de la Sección Perú y el apoyo del IEEE Award Board como un proyecto piloto de Premio en colaboración con Asociaciones Nacionales, siendo el primero que se lleva a efecto a nivel mundial.

La organización del Premio Elektron contempla un Comité Permanente con tres representantes de cada institución, un Comité Ejecutivo con dos representantes de cada institución y un Jurado de cinco miembros, cuya decisión es inapelable. Nuestro reconocimiento a Ted Hissey del IEEE Headquarters y a José Valdez por su permanente apoyo en la organización de este premio. Asimismo nuestro agradecimiento a la IEEE Foundation e instituciones locales por su apoyo económico para la realización del Premio.

Líderes Estudiantiles Organizan Taller de Planificación Estratégica

El 27 de enero último los directivos de las ramas estudiantiles de la Sección Perú se reunieron para asistir a un taller de “Planificación Estratégica para Estudiantes” dictado en la Pontificia Universidad Católica del Perú, el resultado fue bastante positivo logrando que los estudiantes planteen objetivos claros y medibles en el tiempo en base a los cuales armarán sus planes de acción para el presente año e informes de gestión.

Colombia

II Reunión de las Ramas Estudiantiles- Sección Colombia

Como estaba previsto, se llevó a cabo exitosamente la II Reunión de las Ramas Estudiantiles de la Sección Colombia, organizada por la Rama de la Escuela de Ingeniería Electrónica de la Universidad Tecnológica y Pedagógica Nacional-seccional Sogamoso, durante los días 8 y 9 de septiembre. Asistieron 45 delegados de 10 Ramas y de dos en formación (U. de la Salle y la Antonio Nariño-seccional Ibagué). De Bogotá se hicieron presentes: la Distrital, la Escuela Colombiana de Ingeniería, la Javeriana y la Santo Tomás; de Cali, la Autónoma de Occidente y la del Valle; la UIS (la delegación más numerosa: 7 personas), la del Cauca y la Rama Estudiantil antioqueña.

La III Reunión Nacional de Ramas Estudiantiles-2001 ha sido programada en la ciudad de Cali durante el mes de septiembre, a cargo de la Rama de la Corporación Universitaria Autónoma de Occidente-Cue, con la probable participación en la organización de la Universidad del Valle.

Durante el presente año se reactivará el Capítulo de Computación y se buscará formalizar el de Comunicaciones y crear el de Potencia.
Guatemala

Nueva Junta Directiva

El IEEE Sección Guatemala inicia 2001 con nueva Junta Directiva:

SECCION GUATEMALA

Presidente: Marcelo Bobadilla
Vicepresidente: Edwin Solares
Secretario: Alfonso Muralles
Tesorero: Héctor Molina
SAC & GOLD: José Chanquin
Past President: Pedro Macdonald

CAPITULO COMPUTACION

(Computer)

Presidente: Mauricio Sandoval
msb@intelnet.net.gt

CAPITULO INGENIERIA ADMINISTRATIVA

(Engineering Management)

Presidente: Juan Fernando Jiménez
juan_fjimenez@caminoreal.com.gt

CAPITULO COMUNICACIONES

(Communications)

Presidente: Roberto Rodríguez
robertor@cla.att.com

CAPITULO POTENCIA

(Power Engineering)

Presidente: Renato Escobedo
info@provelec.com

Comisión Federal de Comunicaciones, y quien ha estado activo en el campo de las comunicaciones espaciales desde 1965.

En este Tutorial se tocaron temas como: ubicación de frecuencias, técnicas de comunicaciones, tecnología de satélite, sistemas tradicionales, estaciones terrestres, sistemas no tradicionales, sistemas y tendencias del futuro.

Paralelo a este evento, se presentó una conferencia sobre los Nuevos Desarrollos de las Comunicaciones Satelitales organizada por el Capítulo de Comunicaciones y la Rama Estudiantil de la Universidad Santa María La Antigua, USMA el día 22 de marzo.

Panamá

Actividades del Capítulo

El pasado 23 de marzo el IEEE Sección Panamá, con el apoyo de la IEEE Aerospace and Electronic Systems Society presentó el tutorial de Comunicaciones Satelitales, el cual capacitó a los participantes en la comprensión de la estructura, manejo y reglamentaciones de los sistemas de comunicaciones satelitales.

El expositor de este seminario fue el Dr. Sajad Durrani, IEEE Executive Fellow y Consejero para asuntos de Tecnología de la Información.

Venezuela

Curso Tutorial

El Caso California

El IEEE de Venezuela, a través de su Capítulo de Ingeniería de Potencia, y en conjunto con el Departamento de Conversión y Transporte de Energía, de la Universidad Simón Bolívar, organizaron el Curso Tutorial *ELECTRICITY REGULATION:FOCUS ON THE CALIFORNIA EXPERIMENT AND THE EFFECTS OF DISTRIBUTED GENERATION AN ENGINEERS PERSPECTIVE*, donde se analizó el colapso del sector eléctrico en el Estado de California, su proceso de reestructuración y las lecciones que hay allí para aprender. El curso se dictó en el Instituto de Estudios Avanzados el pasado 25, 26 y 27 de Abril del 2001. El expositor fue el Ingeniero Estadounidense Mark Lively, con 26 años de experiencia, graduado del MIT y con una larga trayectoria profesional en la industria eléctrica y del gas, en los aspectos técnico-legales de los procesos de reforma y de definición de precios y tarifas.
Series de Fourier

Todos estamos acostumbrados a representar señales periódicas, comunes en el mundo de la electrónica, no senosoidales, por sus expansiones en Series de Fourier, con el propósito de hallar las respuestas a su inserción en circuitos representables por modelos de dos puertos. Estos circuitos sin embargo, son en general representados por parámetros localizados y casi nunca son líneas de transmisión con señales conmutadas, como sería por ejemplo una fibra óptica pasando pulsos rectangulares.

Cuando trabajé con GTE Laboratories en Waltham, Massachusetts, en los años 77-79, encontré compañeros tratando de producir simulación de efectos de propagación de pulsos rectangulares a través de las fibras ópticas, que en aquel entonces apenas comenzaban a usarse para telefonía.

Entre los efectos observados en la propagación estuvo la degradación de la forma del pulso, mayor cuando mayor distancia recorria. Se observó que los componentes de distintas frecuencias de luz se propagaban a velocidades distintas a través de la fibra y que este desfasamiento relativo era la causa principal de la distorsión en forma.

Al usar la expansión por series de Fourier para analizar los efectos de la línea de transmisión se encontró que los resultados obtenidos eran anómalos. La anomalía consistía en que al desfasar los componentes, que originalmente sumaban cero en los ceros de luz en la cadena de pulsos, se generaba una ‘señal falsa’, de polaridad opuesta al pulso, que llegaba al final de la línea simulada antes de que el pulso llegara.

Fui consultado sobre este defecto y recomendé que la señal original se descompusiera en suma de senosoides, como se estaba haciendo, pero que la porción que en la señal original de éstos fuera verdaderamente cero se multiplicara por cero en la serie, en lugar de depender de que su suma fuera cero al inicio, pues al desfasar no sumarían cero.

El resultado de la multiplicación por cero en los segmentos de senosoides que originalmente sumaban cero fue que de ahí en adelante la simulación produjo imágenes similares a las obtenidas experimentalmente. Desaparecieron los antecedentes de polaridad opuesta y las magnitudes y formas resultaron de gran fidelidad.

A esta expansión por Fourier, recordada en los cursos originales le llamé, para distinguirla de lo usual, la Serie de Fourier Dinámica y en adelante nos referimos a la serie convencional como la Serie de Fourier Estática.

Por ejemplo: para una onda cuadrada de semibases iguales, con base en el eje horizontal, con su mitad positiva comenzando en 0, y magnitud de uno, los coeficientes ‘b’ en la expansión estática serán

$$b(n) = 2/n \pi \sin(w0 t)$$

donde este último término recorta todo lo que no existente de la señal original y transporta lo recortado con los desfasamientos correspondientes a cada frecuencia ‘n w0’ a través de su propagación. El argumento de ‘u’ será positivo sólo durante las mitades positivas de la onda de frecuencia fundamental y negativo en las mitades negativas, por lo que asignar valor de u=1 para las mitades positivas y u=0 para las mitades negativas.

Propongo que nuestros estudiantes de Circuito II, aunque no se les requiera manejar este tipo de detalle, se les advierta de la naturaleza estática de la expansión de señales periódicas por series de Fourier, o de paso, por cualquier otro tipo de expansión estática que represente los ceros como una suma de valores no ceros, igual a cero.

Juan C. Miguens
1998-99 IEEE Director,
RS Latinoamérica
Presidente del Consejo de ex-Directores

El Fondo de Contribución Voluntaria de la Región 9, IEEE Latinoamérica.

Con la debida autorización de la Junta de Directores del IEEE, nuestra Región 9 o IEEE Latinoamérica ha establecido el fondo de contribución voluntaria (“Voluntary Contribution Fund” o “RFC”). Dicho Fondo reúne donaciones voluntarias de Miembros y empleados. Los Miembros podrán indicar la cantidad que deseen donar en el formulario de renovación anual, en el renglón indicado como “RFC”.

Ello se puede hacer tanto para renovar devolviendo la factura escrita por correo convencional como al hacerlo en el Web. También podrán enviarse cheques a nombre de “IEEE Región 9” indicando que el destino será para el RFC.

Las primeras donaciones fueron recibidas ya durante la Reunión Regional de Puerto Rico en Marzo del 2000 por parte de Luis T. Gandía y Jorge Him. Durante el año 2000 fueron ya obtenidos varios miles de dólares.

Está reglamentado que dicho fondo es manejado por el Consejo de ex-Directores de la Región, y únicamente puede ser destinado a apoyar actividades del IEEE dirigidas a beneficiar a estudiantes y jóvenes miembros, así como en países que circunstancialmente estén atravesando una situación económica difícil.

Al renovar, aquellos miembros que se encuentren en condiciones de aportar para el futuro de la profesión y del Instituto, solicitamos que lo hagan, por ejemplo redondeando el monto total. Basta que indiquen el monto en el renglón correspondiente, sea en su hoja de renovación o en la pagina Web. Por poco que pueda parecer, siempre servirá para que nuestros jóvenes miembros, y estudiantes puedan realizar y beneficiarse con más y mejores actividades. Si cada uno de nuestros miles de miembros dona unos pocos dólares, muchos miles se juntan, como ya pasó en el año 2000. Agradecemos en nombre de todos los estudiantes y jóvenes miembros a los que ya lo hicieron. Obviamente los donativos empresariales serán también bienvenidos: los cheques, a nombre de ‘IEEE Región 9’, indicando que son para el RFC, deberán enviarse al Director Regional o al Tesorero Regional.
El pasado 13 de marzo del año en curso se inauguró la Reunión Regional de Latinoamérica en el hotel Bourbon ubicado en la localidad de Foz de Iguaçu en el estado de Paraná, Brasil. Este evento anual congrega delegados de las 26 secciones y de los 3 consejos de la Región 9 de IEEE (Consejo México, Consejo CAPANA, Consejo Brasil) quienes analizan, junto al comité regional, las posibles soluciones a los problemas que confrontan las diferentes unidades locales del Instituto.

Las actividades diarias estaban enmarcadas en 3 áreas, las cuales son: sesiones de entrenamiento, presentación de informes, giras técnicas y sesión plenaria. Las sesiones de entrenamiento fueron dedicadas al servicio Xplore, la base de datos de miembros SamIEEE y a la promoción de membresía y servicios a miembros.

Los coordinadores de comités de trabajo presentaron sus informes y se llevó a cabo el concurso para la selección de la sección ganadora del premio al mejor logro del año. Este premio, fue ganado por la Sección Panam por la presentación del proyecto de establecimiento del comité IEEE en la Comunidad y su primer proyecto de servicio a la comunidad de Sorá en la provincia de Panamá.

El comité organizador preparó una gira técnica a la Planta Hidroeléctrica de Itaipú, un proyecto binacional brasileño-paraguayo que provee 90 TWh de energía a ambos países gracias a los 18 generadores que posee. Ese mismo día se visitó el sitio de las cataratas de Iguazú, las más anchas del mundo, un paisaje natural digno de ser admirado.
Las Palabras del Director

Tenemos como ejemplo lo que le sucedió a Barnes & Noble. Como todos deben conocer, Barnes & Noble es la compañía de venta de libros al detalle más grande en los Estados Unidos de América. Hasta hace poco tiempo su competencia, su mayor preocupación era la cadena de librerías "Borders", la segunda compañía más grande en venta al detalle de libros. Luego surgieron una "strategic inflection point" y de momento toda la atención y preocupación ya no era los andares de "Borders" sino de "amazon.com", una nueva forma de hacer negocio, un nuevo canal de comunicación con los clientes se había creado.

Regresando al IEE, es decir el IEE hoy da cuenta con nueva competencia del mundo de la Nueva Economía en sus punto.com, como son conocidos, entre ellos "El severo" que ha anunciado que invertirá sobre 1,000 millones de dólares en sitios web, utilizándolos para expandir los ofrecimientos y los servicios.

Estas compañías privadas con fines de lucro se están anunciando como "Organizaciones de Miembros", "Comunidades Profesionales", "Comunidades Técnicas" he invitan a inscribirse con membresía gratis. Ante este reto se enfrenta el IEE. Quiero dar mi análisis de lo que constituyó el momento para mantener nuestra ventaja competitiva.

Para esto quiero resumir un discurso que ofreció Geoffrey Colvin, Director Editorial de la Revista Fortune, posiblemente la revista más prestigiosa de los Estados Unidos en asuntos de negocios.

En cuanto a Servicio e Innovación, el Sr. Colvin menciona unos asuntos interesantes:

1. "Hay que responder a los cambios más rápidamente y con más creatividad que la competencia.
2. I.T. Es un juego duro, el que hay que jugar pero el que no te dará la ventaja competitiva.

En estos dos asuntos es dónde veo el mayor reto del IEE.

Siendo una corporación sin fines de lucro, con fondos limitados la inversión en I.T. está por debajo de la competencia y una estructura burocrática comparable con instituciones gubernamentales, el reto es el reto que agilidad es muy difícil. La cultura corporativa es de poca agilidad.

Cultura "es lo que hace la gente cuando no hay alguien diciéndole lo que tienen que hacer".

El IEE debe ampliar el ámbito de sus campos técnicos para incluir nuevos e innovadores temas, muchas veces multidisciplinarios, tales como las computadoras, las redes y otras bioinformáticas. El IEE debe poder crear comunidades virtuales para facilitar el intercambio de conocimientos y debe atender las necesidades de la industria creando capítulos temáticos tales como "Wireless". Debemos luchar por convertirnos en el portal de información técnica más importante del mundo. Todas las informaciones en sus electroinformáticas.

Este lo debe lograr con un alto sentido de urgencia.

A continuación les mencionare mi versión de lo que estimo debe ser la visión del IEE. Es decir que el IEE debe tener un futuro predecible, ese es 5 años. El IEE mejorará la calidad del contenido de sus miembros de acceso instantáneo a las últimas innovaciones tecnológicas, servicios y relaciones interprofesionales.
El IEEE Xplore es un sistema Online que provee acceso completo al texto de los transacciones del IEEE, los journals, a las revistas y a los proceedings de las conferencias publicados desde 1988 y todos los estándares actuales del IEEE vía el Internet. IEEE Xplore sirve a los miembros del IEEE así como a los usuarios que no son miembros del IEEE pero que tienen suscripciones a paquetes de publicaciones Online.

IEEE Xplore™ sirve a los miembros del IEEE así como a los usuarios que no son miembros del IEEE pero que tienen suscripciones a paquetes de publicaciones Online.

IEEE permite el uso de IEEE Xplore™ para que los usuarios puedan ver, hacer “download” e imprimir el contenido encontrado en IEEE Xplore™, solo para su uso personal. IEEE Xplore™ aun no ofrece los artículos en línea. Si usted quisiera comprar un solo documento impreso, utilice por favor nuestro servicio de entrega de documentos, Ask*IEEE. http://ieee.uncoverco.com/ieeeshome.htm

IEEE Xplore™ ofrece a los miembros la ventaja de tener acceso a las suscripciones en línea personales, pero este acceso es determinado por cada sociedad individual deIEEE. Para mayor información visite http://ieeexplore.ieee.org/lpdocs/epic03/Access_Rights.htm

Para poder utilizar IEEE Xplore™ nuestra computadora debe tener Netscape Navigator 4.x para el cual fue desarrollado o en tal caso el Microsoft Internet Explorer 4.x o mayor. Además necesitará Adobe Acrobat para leer los documentos en PDF. Debe fijar la resolución de la pantalla a 800x600 para el mejor funcionamiento.

IEEE Xplore™ actualiza el contenido de sus páginas dependiendo del tipo de documento y de la frecuencia de publicación del mismo. Para los transacciones, los Journals y las revistas, el contenido será actualizado tan pronto como la edición este lista para el tiraje. IEEE Xplore™ será actualizado en el momento en el que el nuevo contenido llegue a estar disponible.

Para los proceedings de la conferencia, el contenido aparecerá en IEEE Xplore™ cerca de 30-60 días posterior al recibo en el IEEE del proceedings impreso de la conferencia. Observe que los proceedings de la conferencia llegan a menudo al IEEE varias semanas después de la fecha de la conferencia. Para los estándares, el contenido será puesto al día cuando llegue a estar disponible, siguiendo todo el trabajo editorial.

El IEEE Web Account es un sistema de la autenticación que proporciona al acceso a los productos en línea y a los servicios de IEEE basados en el estatus del miembro. Para los miembros de IEEE una cuenta del Web de IEEE provee el acceso a un número creciente de los servicios en línea y de los productos de IEEE http://www.ieee.org/web/accounts/index.html#grid incluyendo ventajas para los miembros solamente. Por ejemplo, podrás renovar tu membresía, actualizar tus datos en IEEE, utilizar el IEEE Xplore, utilizar el IEEE Fatbrain, utilizar la tienda Online de una forma ordenada, además de ver la Spectrum antes de que te llegue por correo. Todo esto con un W eb Account y de manera inmediata.

Para los Afiliados a una Sociedad del IEEE

Una cuenta del Web de IEEE provee el acceso en línea de los productos de IEEE.

No miembros del IEEE

Al usar shop online del IEEE, un W eb Account de IEEE permite que usted mantenga convenientemente su información del historial de la factura, del envío y de la orden de compra.

Para solicitar un IEEE Web Account se necesita:

Afiliados de alguna Sociedad y Miembros IEEE

Email válido
Número del miembro - encontrado en su carnet de socio
Número de PIN del registro, proporcionado en la carta incluida en su paquete de renovación de membresía.

No miembros del IEEE

Necesitan una cuenta de email válida.
Alguno de nosotros se ha preguntado:

Cuántos passwords memorizamos en total?

Así titula un programa del canal de televisión Discovery pero considero que es un buen título para el artículo porque realmente hoy en día estamos tan involucrados con las nuevas tecnologías que a diario de alguna forma tenemos contacto con una red de computadores, Internet, bases de datos, y tantas aplicaciones que deben estar en línea para el normal funcionamiento de nuestra vida.

Probablemente alguno se haya preguntado que significa el símbolo @. Pues como Internet se creo en USA, cada dirección electrónica o email tiene éste símbolo que indica la máquina de donde usted usa el servicio y quiere decir “EN”. Así por ejemplo si el email es:

Chuco@hotmail.com, significa que chuco tiene su cuenta “EN” hotmail.

Actualmente todos hablamos de passwords, emails, el o la internet, que no me llego un mail, que ayer envíé una carta a ESPAÑA y ya me respondieron,...y así vemos como con demasiada facilidad se han roto las fronteras limitrofes entre países al igual que las fronteras del conocimiento.

Esto muy conocida red de redes nos entrega respuesta a infinita de preguntas en cuestión de segundos y la educación rompió también los límites de las aulas y algunos ya pueden acreditar títulos extranjeros sin salir del país de residencia, esto con la llamada Educación Virtual E.V.

Pero el tema de cual quiero escribir ahora ocupa gran parte de nuestra memoria y son los llamados passwords o claves de acceso.

Alguno de nosotros se ha preguntado: Cuántos passwords memorizamos en total? Aquí veremos cuantos.

De una manera muy práctica crearemos un ejemplo de vida diaria en línea.

Una mañana de pago, deseas confirmar que el pago está consignado y llamas al servicio en línea telefónico de tu banco, el servicio te pide tu número de cuenta, luego tu password(1).

Una vez sabes que el dinero existe, vas a sacarlo de un cajero electrónico, digitas tu password (2) y te sale una pantalla que dice EN EL MOMENTO NO PODEMOS ATENDERLE.

Vas al interior del banco o corporación y en la ventanilla de atención al cliente te dicen que NO HAY LÍNEA.

Así que decides ir al cajero que nunca te falla, el de...LA TARJETA DE CRÉDITO!!! Claro...todo va muy bien hasta que después de digitar tu password (3), en la caja del supermercado te dicen lo sentimos pero la entidad a la que usted está afiliado no está en línea en estos momentos.

Con tristeza te vas para tu sitio de trabajo, ponesse ahora en un profesor universitario. Llega a su escritorio, prensa su computador el cual por razones de seguridad de redes, tiene clave (4), entra al sistema operativo y desea disparate un poco consultando sus correos para lo cual el software te pide un password de acceso a la cuenta electrónica (5). YES!!! Al menos alguien te escribe y tu día no es tan malo.

Como todo cibernauta que se respete, posees otra cuenta de correo electrónico porque "TODO COLOMBIANO TIENE DERECHO A TENER SU EMAIL". En esta otra cuenta como en todas, te exigen un password el cual digitas (6), revisas tus correos muy personales o los que desean que no se perturben cuando el sistema de tu oficina no está en línea; así todos los emails te llegarán. Después de imprimir alguna información de interés o algún correo importante, vas a imprimir pero como la impresora está en red, debes digitar la clave de acceso al computador al cual está conectada la impresora. (7).

Si eres de aquellos que gusta de visitar otros portales o páginas web para información o porque tienes tu propia web, debes poseer otro password (8). El hogar... Con tanta tecnología a tu alrededor, teléfonos celulares, bipers, líneas calientes, etc., tu teléfono no puede ser la excepción en este mundo moderno y debe tener un password o código de bloqueo (8). Para llamadas internacionales o celulares.

Que vaya ya has memorizado ocho (8) claves o passwords!!!. Algunos piensan que nunca un computador podrá mejorar al ser humano y eso que nosotros solo usamos una pequeña parte del cerebro y solo el lado más desarrollado.

Supongo que al final de que yo te has preguntado alguna vez como tener presente toda esta información... pues cada uno encuentra su método. Solo le deseo la mejor de las suertes en este mundo tan complejo y cada vez más cambiante.
En la Unión Europea el consumo de electricidad tan sólo por stand-by se calcula en 100.000 millones de kilovatios-horas.

Para generar estos 20.000 kVh se requieren dos grandes usinas; la emisión del gas invernadero CO2 correspondiente a su generación equivale al 1,5% de la emisión total.

El hábito de dejar los electrodomésticos en los hogares y las máquinas de oficina prendidas en stand-by es una importante fuente de desperdicio de energía eléctrica. Este desperdicio produce gastos innecesarios y constituye una carga para el medio ambiente por la emisión de dióxido de carbono, el principal responsable del efecto invernadero.

En la Unión Europea el consumo de electricidad tan sólo por stand-by se calcula en 100.000 millones de kilovatios-horas. En la generación de esta cantidad de energía se emiten 40 millones de toneladas de dióxido de carbono, el equivalente de la emisión anual de Suiza. En Alemania, el 11% del consumo total de electricidad es gastado por artefactos eléctricos que no se usan pero tampoco se apagan totalmente.

Aparar totalmente los aparatos será un buen negocio para los hogares. Un hogar promedio que dispone de TV y video-casetera, audio, cocina eléctrica con reloj y un pequeño termotanque eléctrico gasta unos 50 vatios por año en el stand-by, lo cual produce un gasto de 130 marcos.

Los desperdicios más importantes en los hogares son producidos por el stand-by de los aparatos de TV y video seguidos por los equipos de audio. En las oficinas los aparatos que registran el consumo de stand-by más alto son los equipos de telecomunicación, copiadoras, computadoras e impresoras.

Si se siguen usando los aparatos con el consumo de energía actual del desperdicio de energía por el uso del stand-by y la emisión de gases CO2 se elevarán hasta el año 2010 en el 11%.

Pero ya se está trabajando en el desarrollo de artefactos que desperdicien menos energía. Se calcula que, utilizando tales aparatos, el desperdicio podrá reducirse en el 43% hasta el año 2010 (y ello a pesar del creciente número de artefactos eléctricos en los hogares y las oficinas). Actualmente se debaten medidas regulatorias para bajar el desperdicio de energía, entre ellas el llamado Plan 1 Vatio.

Este plan prevé que los artefactos eléctricos nuevos, a partir del año 2010, funcionen en el stand-by con una potencia no más alta que 1 vatio.

La hipótesis es que sustituyendo todos los artefactos actualmente en uso por aparatos de una potencia de 1V, se podrá ahorrar hasta el 90% del gasto de energía producido en el stand-by en las oficinas y hogares.