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Abstract—This work presents both a novel control scheme for 

a mobile robot and an optimization method for improving its 
performance. The analyzed control problem will be to move a 
two wheeled robot from an initial posture to a final destination 
using the minimum amount of time and arriving at a low speed 
to be able to stop. First the control strategy, based on a fuzzy 
logic controller for the robot kinematics and a PID controller 
for the robot dynamics, is presented. The fuzzy controller is 
then optimized using a new type of genetic algorithm that 
replies the reproduction method of bees. The optimized fuzzy 
controller presents an important improvement on its 
performance. Finally, several optimal controllers are combined 
together to create an adaptive controller that can handle 
general cases in an efficient way. 
 

Index Terms—Fuzzy control, Genetic algorithms, Mobile 
robots, Optimization methods. 

 

I. INTRODUCTION 

he use of robotics and mobile automation systems is 
increasing every year, and with it, the necessity of more 

robust and flexible products that solve problems efficiently. 
One of the most difficult robotic systems to create is 
autonomous vehicles, due to the fact that they have to deal 
with dynamic and changing environments which make the task 
very challenging [1].  

With the aid of robotic competitions like RoboCup [1], and 
the acceptance, by the consumers, of new robotic products 
such as vacuum cleaners or robotic pets, the interest in mobile 
robotics has increased. This has led to a great number of 
research studies  aiming to improve autonomous vehicles, 
making them capable of dealing with the surrounding 
environment. Several solutions have emerged from these 
studies , from robust guidance mechanisms , to simple robots in 
colonies, able to help each other to complete a certain task. 

One of the most important components of a mobile robot is 
the control loop, which enables the robot to follow a certain 
trajectory determined by higher level decision system. This 
work presents a novel control scheme, consisting of two 
layers of control systems that are able to work efficiently with 
the nonlinearities inherent to the mobile robot, but without 
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adding too much extra computational cost. A simple fuzzy 
logic controller, based on heuristic rules, is  presented as a way 
of dealing with the nonlinear elements of the system, which are 
optimized afterwards using new genetic techniques. 

Evolutionary computational systems are one of the tools 
that have shown excellent results when used to optimize 
complex systems [2]-[4]. In this work, a new genetic algorithm 
that emulates the evolution principles of bee colonies is used 
as a way of optimizing the position of each membership 
function, improving through this method, the overall 
performance of the robot controller [2]. The results of the 
optimization are analyzed and tested, simulating the system in 
a Simulink model and showing that the performance of the 
resulting controller is better than the one of the original fuzzy 
controller. The optimization is done several times using 
different destination points to check if the solutions are 
equivalent. Based on these optimized solutions for specific 
cases, a new adaptive fuzzy controller is then designed, which 
generates the best solution for all general cases, but based on 
the optimized controllers obtained for specific destination 
points. 

 

II. MOBILE ROBOT MODEL 

Figure 1 shows the mobile robot model with the basic 
parameters used in the system. The body of the robot is 
considered to be circular disc of radius b and mass M, with 
two wheels of radius r and mass m each. The right wheel 
rotates at an angular speed of 11 θω &= , and the left at 22 θω &= . 

Each wheel is connected to an independent DC motor using a 
gear system of ratio G:1. 

 

 
Fig. 1. Robot model showing the main dynamic parameters 
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A. Robot Kinematics 

The kinematics equations for the robot relate the state or 
posture of the robot, with the angular velocities of each wheel. 
The posture of the robot is defined as the vector X=[x y ϕ]T, 
where x and y are the coordinates of the  center of mass of the 
robot on a reference plane, whereas ϕ is the angle of the 
direction of motion of the robot, with respect to the X axis. 

Equations 1 and 2 show the relation between the angular 
speed of each wheel, and the rotational and tangential speed 
of the robot, as obtained from [5]: 
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The posture elements x and y are obtained projecting the 

velocity of the robot on the X and Y axes. Equations 3, 4, and 5 
give the position of the center of mass and the angle of 
direction of the robot due to the speed of the wheels : 
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These equations also make the system non-linear, due to 

the trigonometric equations needed for the projection of the 
velocity over each axis. 

B. Robot Dynamics 

The dynamic equations of the robot relate the torque 
applied to the wheels, with the angular acceleration they 
acquire, considering the mass inertia of the different elements 
in the model. These equations can be deduced using the 
Lagrangian formulation, which is based on the calculation of 
the energy of the system [6]. The total energy of the robot can 
be calculated as the sum of the kinetic energy of the body and 
the kinetic energy of each wheel, shown on equation 6, 
whereas the potential energy is not used, as the robot is 
considered to move on a single level plane. 

 

1 2B w wK K K= + +L  (6)  

 
Each of these terms will consist on a term due to the linear 

movement and one due to the rotation: 
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In equation 7,  IB represents  the moment of inertia of the 
robot whereas in equation 8, Iw represents  the moment of 
inertia of each wheel. As both body and wheels  are considered 
solid discs:  
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Replacing these values for the inertia, and using equations 1 

and 2 on equation 6, the Lagrangian expression is obtained: 
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The relation between the angular acceleration of each wheel 

and the torques applied is obtained from equation 10, using 
the following relation: 
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In equation 12 iθ&&  represents  the acceleration of wheel i, and 

τi the applied torque. 
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C. DC Motor Model 

To complete the model of the robot, the DC motors attached 
to each wheel must be also added. These motors will apply the 
needed torque to achieve the desired acceleration. The 
simplified equations that relate the voltage applied to each 
motor, Vi, with the applied torque are as follows: 
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L represents the electric inductance of the motor, R the 

electric resistance, Km is the motor constant and Ka is the 
armature constant. G represents the mechanical gear reduction 
that connects each wheel to its motor. 
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III. CONTROL STRATEGY  

A. Control Problem 

The objective of the control strategy is to generate the 
necessary voltages on each DC motor, to move the robot from 
a starting posture X0=[x0 y0 ϕ0]

T, to a final goal (xf, yf), without 
constrains on the final angle ϕf. 

 
Fig. 2. Cascade control scheme 

 
The main difficulty of this control strategy is that the 

kinematic equations of the robot are non-linear and there is no 
unique operating point, which could help the design by using 
a linearization [12]. Another problem is that the posture 
equations (3 and 4) are coupled, as they both depend on ω1 
and ω2, or τ1 and τ2 which are the actual manipulated variables. 
On the other hand, the dynamic and DC motor equations are 
linear, and although they are also coupled, the use of a 
classical controller, such as a PID controller, to control the 
velocity of each wheel could return good results. However, the 
use of a PID controller for solving the whole control problem is 
very inefficient, especially because there are no general 
methods to tune the gain parameters in the case of non-linear 
plants such as  this one.  

A strategy that has shown to be very efficient to control 
non-linear plants is fuzzy logic [7],[8]. The problem with this 
method is that the amount of input variables needed in this 
case is high, due to the fact that the manipulated variables are 
acceleration related, whereas the control is done over position 
related variables. This means that the controller needs not 
only the distance and relative angle to the final destination, 
but also the approaching velocity and angular speed of the 
robot. As a way to reduce the amount of input variables on the 
fuzzy controller and simplify the computational requirements, a 
cascade control scheme is used. First, a tuned PID controller is  
implemented to control the velocity of each wheel by 
modifying the voltage applied to the motors. On top of this 
controller, a fuzzy logic controller is  used to generate the 
needed angular velocities so the robot moves to the desired 
reference. Figure 2 shows the proposed control scheme. 

B. PID Controller Design 

Although the dynamic equations of the robot are coupled, 
the implemented PID stage is based on two independent 
controllers, one for each wheel. As figure 2 shows, each PID 
controller senses the angular speed of the corresponding 
wheel and uses the detected error to increase or reduce the 
voltage applied to the motor. The reference for this loop is 
given by the fuzzy logic controller. As in real life robots have a 

limited voltage range to apply to the motors and the motors 
have a maximum input voltage, the PID output is limited to ±5 
[V]. This also ensures that the torques applied by the motors 
to the robot wheels stay in a limited range. 

The gains for each PID controller are tuned, having as a 
goal a quick settling time and no more than 1% overshoot [9].  

 
Fig. 3. Angular speed control 

 
As the simulation on figure 3 shows, the PID controller is 

able to meet the requirements using the following gains: 
Kp=450, Ki=1, and Kd=20. 

The PID control stage was tested in several conditions, 
showing in all the tests that the design constrains were 
respected, even in the worst scenario: when one wheel is set 
to move in one direction while the other is set to another. The 
simulations also showed that changes in one of the references 
made no significant disturbances on the velocity of the other 
wheel. 

C. Fuzzy Controller 

The objective of this controller is to create the necessary 
references for the angular velocities of each wheel, in order to 
move the robot from its starting posture to the final 
destination. 

Considering the problem from a qualitative point of view, it 
is possible to create a set of rules that takes into account the 
distance to the objective (named D) and the relative angle, 
between the direction of the robot and the final destination 
(named ∆ϕ), to determine the velocity of each wheel, which will 
be the manipulated variable. The rules will be of the form: 

 
If D is LD and ∆ϕ is L∆ϕ then ω1 is Lω1 and ω2 is 

Lω2 
(15)  

 
In equation 15, LD is one of the distance related membership 

functions, L∆ϕ is related to the relative angle, and Lω1 and Lω2 
are the membership functions for the speed of each wheel. 
Figures 4, 5, and 6 show the membership functions used for 
the fuzzy controller. 

The distance between the center of mass of the robot and 
the objective is used as a way of controlling the arrival speed. 
This is done later, in the creation of the rule base, by relating 
membership functions (MFs) associated with smaller distances 
to MFs associated with slower speeds for each wheel. Three 
MFs were created for the distance: Close (C), Far (F), and Very 
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Far (VF), as shown in figure 4. 
The other input of the fuzzy controller is the relative angle 

∆ϕ, which was divided into five MFs, covering from –π to π. 
The used MFs relate the position of the objective with respect 
to the angle of the robot: Back Right (BR), Front Right (FR), 
Center (C), Front Left (FL), and Back Left (BL).  

 
Fig. 4. Distance membership functions.  
 

 
Fig. 5. Relative angle membership functions.  
 

 
Fig. 6. Membership functions for the angular velocity of the wheels.  

 
Figure 5 shows the different MFs created for the relative 

angle. This variable is used to control the rotation speed of the 
robot, making it turn quickly when the relative angle is high, 
whereas it moves in a straight line when the relative angle is 
close to zero. The width of the center membership function, C, 
is responsible of deciding when the robot is going to start to 
move forward. If C is too narrow, the robot starts moving 
towards its goal only when it is in front, loosing time and 
energy in a rotation without advancing. On the other hand, if C 
is too wide, the robot starts moving before it is facing the 
objective, doing long and curved trajectories that are not 
efficient.  

Finally, five MFs are implemented for the speed of each 
wheel: Back Fast (BF), Back Slow (BS), Zero (Z), Front Slow 
(FS), and Front Fast (FF). These are presented on figure 6. 

The rule base for the fuzzy logic controller is shown on 
tables 1 and 2, one for each wheel. These rules associate the 
state of the robot with respect to the objective (distance and 
relative angle), with the needed velocity for each wheel. The 
rule base is designed to make the robot turn quickly when it is 

far away from the goal, and then continue on a straight line. In 
this way the trajectory followed by the robot is minimal and no 
energy is wasted in log turns. The rule base must also make 
the robot move fast when it is far away, and slow down at the 
time of arrival. 

 
 
 

T ABLE I 
RULE BASE FOR ω1 

C BF BS Z FS FF 
F BF Z FS FS FF 

VF BF FS FF FF FF 

D
 

 BR FR C FL BL 

  ∆ϕ 
 

 
T ABLE II 

RULE BASE FOR ω2 
C FF FS Z BS BF 
F FF FS FS Z BF 

VF FF FF FF FS BF 

D
 

 BR FR C FL BL 

  ∆ϕ 
 

 
The rules of the fuzzy controller are inspired on heuristic 

knowledge of the behavior the robot must have in order to 
accomplish the task. The behavior is  similar to what humans 
do in order to go from one point to another. For example, if the 
objective is at the back and to the left, then the right wheel 
must go forward, while the left one must go backwards, making 
the robot turn till the objective is almost in front. Then the 
robot must start moving forward towards the goal, correcting 
slightly the direction of movement if the relative angle 
increases while moving. Depending on how far is the 
objective, the velocity of the wheels will increase to move 
faster (or turn quicker), and when the goal is near the speed is 
reduced so the robot can stop on arrival. In a more general 
way, the robot will turn until it faces the goal and then move 
on an almost straight line. The accuracy to face the objective 
will be given by how narrow is the C membership function of 
the relative angle variable.  

D. System Simulation 

To test the performance of the controller, the whole system 
was simulated using Simulink. The goal of the robot was to 
move from and initial position (0,0) and a variable initial angle, 
to a final position (-2,1) on the XY plane. Figure 7 shows the 
simulation results. 

Four different initial angles were used: -π, -π/4, π/4, and 3π/4, 
to consider the behavior of controller in different cases. As 
figure 7 shows, the robot moves using small turns by rotating 
first from its initial position and then moving in an almost 
straight line towards the destination point. 
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Fig. 7. Robot trajectory for different initial angles: -π, -π/4, π/4, and 
3π/4. 

 

IV. GENETIC OPTIMIZATION OF THE FUZZY CONTROLLER 

A. Method Description 

The simulations show that the performance of the controller 
is  very sensitive to the position of each MF on the fuzzy 
controller, indicating that it could be optimized to improve the 
performance. An interesting way to do this  is by using 
evolutionary computation algorithms , to determine a better 
position for each MF based on a performance parameter also 
known as “fitness” [3],[4]. 

Genetic optimization algorithms work in a similar way to 
what evolution theories describe. The algorithm starts with an 
initial population of possible solutions. Each one is tested and 
a fitness value is assigned to them depending on the 
performance of the solution, which helps to determine the 
better solutions within the population. Using one of the 
several methods [4], a group of solutions (generally the ones 
with a higher fitness) are selected to be combined, with some 
probability, with the other solutions of the population, hoping 
that the mixture between them could create a better solution. 
The cycle is repeated several times and it is stopped after a 
certain number of generations. There is a large number of ways 
to implement a genetic algorithm [10], depending on the goals 
of the optimization. Most of them use “elitism”, which means 
that the best solutions are always copied directly into the next 
generation, ensuring that the “genes” of these solutions 
remain in the population. The use of elitism gives an 
advantage over other implementations, because the process 
can be stopped at any time and it will always have a better or 
at least equal solution to the best solution in the initial set. On 
the other hand, when using genetic algorithms there is no 
demonstration that the achieved solution is  the global 
optimum. 

Another evolutionary element added is the use of mutation 
within the genetic algorithm. This means that with a certain 
probability the genes from some individuals change randomly, 
adding new elements to the population and eliminating or at 
least diminishing the possibilities that the whole population is 
kept within a local optimum. 

Several researchers have applied genetic optimization on 
fuzzy logic systems, achieving a better performance on their 

systems compared to benchmark solutions. This optimization 
approaches include parameter tuning on the MFs and rule 
optimizations as in [11]. 

In this work, a recently applied method for selecting the 
better solutions of the population is used [2]. This algorithm is 
based on the evolution scheme used by bees, in which only 
one single member of the colony, the queen, is able to combine 
with the rest of the population to create a new generation. This 
makes easier choosing the parent solutions and helps to keep 
the best solutions within the population. 

The optimization will only modify the MFs of the distance 
and relative angle variables, leaving the MFs of the speed of 
each wheel without change. As the MFs are triangular, they 
can be expressed as a three element vector containing the 
start, peak, and stop coordinates of each of them. Each 
controller contains 3 distance MFs and 5 relative angle ones, 
making it possible to describe the whole controller by a 8x3 
matrix, called Ci. Each matrix describes one element in the 
population. On every generation, all solutions are tested and 
the one with the highest fitness is  combined with all the other 
solutions using a certain probability. The combination is done 
by averaging both individuals: 
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Elitism and mutation is used within the optimization to 

ensure that the best solution is kept and to minimize the 
chance that the population converges to a local optimum. The 
two conditions of the control problem are that the robot 
achieves the goal as fast as possible, and that the end velocity 
is low enough so the robot is able to stop. As a way of 
including these two restrictions, the fitness function used is a 
linear combination of both, as described in equation 17, where 
T is the time used to reach the objective and ωi is the final 
speed of each wheel: 

 
( )1 2F T rα ω ω= + +  (17)  

 
The optimization seeks to get the lowest possible fitness, 

which means that the robot must reach the goal fast, and with 
low final speed. The α factor is used to give a relative weight 
between the time and speed constrains, having units of 
[sec2/mt] to leave the fitness in [sec]. A higher value of α will 
imply that the optimum will have a slower end speed than the 
one with a low α value. 

B. Optimization 

The optimization is done using an initial population of 20 
different fuzzy controllers. Each of these is created using the 
original robot fuzzy control as a base, but with all its genes 
modified randomly. The combination probability is set to 95% 
and a mutation probability to 5%, with a simulation time of 50 
generations. Each individual is  tested using [0 0 0]T as the 
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initial posture, and setting the goal at (-1,1). The α factor in the 
fitness function is set to 1600 [sec2/m], to make the time taken 
to reach the goal and the final speed comparables. Using these 
parameters the fitness value for the original control system is 
67,81 [sec]. 

The optimization cycle is  repeated 3 times to check if the 
achieved solutions have things in common. In all three cases 
the fitness of the best solution is in average 26 [sec], needing 
25,88 [sec] to achieve the objective and arriving at a speed of 
7,47x10-5 [m/sec]. The MFs obtained after the optimization are 
shown on figures 8 and 9. In all three cases the best solutions 
share an element in common: the Far (F) membership function 
is moved away from the operating range, which was from 0 to 
1,4 [m]. This means that this MF is not needed in the system 
and only introduces delays, making the controller less 
efficient. 

 
Fig. 8. Optimized set of MFs for the distance variable. 
 

 
Fig. 9. Optimized set of MFs for the relative angle variable. 
 

For the relative angle MFs, a similar effect occurred. All the 
optimal solutions eliminated the Front Left (FL) membership 
function from the operating range, either by making it so 
narrow that it never becomes activated (as shown on figure 9) 
or by moving it away from the operating rage in the simulation, 
which was from 0 to 3π/4. This also implies that this MF is not 
needed in the control system. As the MFs associated to the 
right side of the robot are never active, no important changes 
are observed on them, whereas the Center (C) MF is deformed 
sideways in all 3 solutions. 

To check if the optimum position for the relative angle MFs 
is symmetrical, the optimization is done again with the goal set 
on (-1,-1). The optimization shows that the optimal solution for 
the distance variable is  the same, whereas the solution for the 
relative angle variable is  almost symmetrical to the ones 
obtained before. 

As all solutions indicate that some MFs are not needed, 
these are eliminated from the fuzzy controller, and the 
optimization is done again to check if some improvement is  

possible. With the goal set on (-1,1) the optimization algorithm 
is able to reduce the fitness function of the optimal controller 
to 25,12 [sec]. The MFs obtained after the second optimization 
are shown on figures 10 and 11. Notice the non symmetrical 
shape of C on the relative angle MFs. 

 

 
Fig. 10. Optimized set of MFs for the distance variable, after 
eliminating the Far (F) MF from the original set. 

 
Fig. 11. Optimized set of MFs for the relative angle variable, after 
eliminating both Front Right (FR) and Front Left (FL) MFs from the 
original set. 

 

V. DESIGN OF AN ADAPTIVE FUZZY CONTROLLER 

The different solutions show that the optimal positions for 
the MFs depend on the position of the goal. The optimum 
solution for going from the origin to the coordinate (-1,1) is  not 
as good if the goal is set on (-1,-1). To create a general 
adaptive control system, the optimal solutions for both cases 
are combined depending on the final destination, creating a 
controller that is  able to go efficiently from one point to 
another, with an overall performance better than the optimized 
controllers by themselves, outperforming the original fuzzy 
controller, and without the need of optimization cycles for 
every new destination goal.  

The adaptive controller is created by a linear combination of 
the two solutions obtained in the optimization stage. This is 
done by combining the matrices that describe the controller as 
equation 18 shows: 

 
( ) ( )1 21C C Cλ λ λ= + −  (18)  

 
Where C1 is the control matrix that describes the fuzzy 

controller optimized to go to the point (-1,1), whereas C2 
describes the controller optimized to go to (-1,-1). The value of 
λ, the adaptation parameter, is  selected depending on the 
angle of the goal with respect to the angle of the robot. 

This type of adaptive controller can be used for trajectories 
based on checkpoints, where the control system can 
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recalculate the fuzzy MFs parameters every time a checkpoint 
is reached, adapting the controller to have an improved 
performance depending on the position of the next checkpoint. 
In this way, the control strategy is optimized based on the 
actions the robot must take on the future. 

To compare the adaptive controller with the previous 
control systems, the robot is set to move from the origin to 
(1,1) and then to (2,0). Three controllers are used in the 
simulation: the original fuzzy controller, one of the optimized 
controllers from section IV, and the adaptive controller. For all 
three cases the different trajectories are compared, as well as 
the angular speed of the wheels over time. 

 

 
Fig. 13. Trajectory comparison between the original fuzzy controller 
(1), one of the optimized controllers (2) and the general controller (3). 
 

 
Fig. 14. Angular speed for the original fuzzy controller (1), one of the 
optimized controllers (2) and the general controller (3). 

 
As figure 13 shows, the general controller makes the robot 

move almost in straight lines towards the checkpoints, using 
less time and wasting less energy than the other controllers. 
Figure 14 shows that the general controller also allows the 
robot to move faster, arriving in less time and with a lower end 
speed than the other controllers. The fitness value for the 
different controllers in this test is: 132,14 [sec] for the original 
controller, 48,89 [sec] for the optimized one, and 47,52 [sec] for 
the adaptive controller. 

 

VI. CONCLUSION 

Through this work it is  showed that the new described 
control scheme results in an excellent control system for a 2 
wheel mobile robot. It is also demonstrated, that the “Queen 
Bee” based genetic optimization algorithm is a very good tool 
to optimize the performance of fuzzy logic controllers, and that 

by modifying the parameters that create each membership 
function the efficiency can be improved. 

Finally, this work presents an adaptive fuzzy controller that 
can modify its membership functions based on the goals 
ahead, without the need of an optimization cycle every time 
the goal is changed. 
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