Assessment of Soft Errors due to Alpha Emissions from Presolder on Flip Chip Devices

Rick Wong, Shi-Jie Wen, Peng Su, Li Li 10/30/09
Introduction

- **Cause of Soft errors**

a. Ion creates electron hole pairs in the silicon
b. Charges drift and collect at nodes, producing a prompt current
c. Later charges diffuse toward the nodes, producing lower current

- **If the current is large enough, storage nodes such as SRAMs can switch states**

Source of High Energy Particles

- High energy cosmic neutrons
 - High energy particles from space collide with atmosphere form a shower of particles at terrestrial level
 - These high energy particle can collide with silicon atoms

- Boron-10 Fission
 - B-10 captures a thermal neutron and fissions into a Li ion and an alpha particle

- Alpha particle
 - Ion emitted from Uranium and Thorium (and daughter species) decay
 - U and Th are trace contaminants in package materials; solder, underfill, molding compound
Most Alpha Particles below 6.4 Mev

<table>
<thead>
<tr>
<th>Thorium decay chain</th>
<th>Energy (MeV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Th-232</td>
<td>4.1</td>
</tr>
<tr>
<td>Th-228</td>
<td>5.5</td>
</tr>
<tr>
<td>Ra-224</td>
<td>5.8</td>
</tr>
<tr>
<td>Rn-220</td>
<td>6.4</td>
</tr>
<tr>
<td>Po-216</td>
<td>6.9</td>
</tr>
<tr>
<td>Bi-212</td>
<td>6.3</td>
</tr>
<tr>
<td>Po-212</td>
<td>8.9</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Uranium decay chain</th>
<th>Energy (MeV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>U-238</td>
<td>4.3</td>
</tr>
<tr>
<td>U-234</td>
<td>4.9</td>
</tr>
<tr>
<td>Th-230</td>
<td>4.8</td>
</tr>
<tr>
<td>Ra-226</td>
<td>4.9</td>
</tr>
<tr>
<td>Rn-222</td>
<td>5.6</td>
</tr>
<tr>
<td>Po-218</td>
<td>6.1</td>
</tr>
<tr>
<td>Po-214</td>
<td>7.9</td>
</tr>
<tr>
<td>Po-210</td>
<td>5.4</td>
</tr>
</tbody>
</table>

Actual energy spectrum is broadened to lower energies due to energy loss

Particles emitted inside the material lose energy as they pass to the surface

Baumann, IEEE Trans on Dev and Materials Rel, V1, No.1 March 2001 pp17-22
Penetration Depth of Alpha Particle

- Alpha particle penetration depth is a function of the material and the energy
 - Copper: about 10 to 20um
 - Oxide: about 20 to 50um
 - Underfill: about 30 to 70um
- Alpha emitters must be close to the silicon surface to cause soft errors

JEDEC committee 13.4 draft “Alpha Radiation Measurement in Electronic Materials” 2008
Soft Errors from Alpha Particles

- Materials near the silicon surface that can emit alpha particles
 - Wire bond packages: molding compound
 - Flip chip packages: solder bump, underfill, presolder on substrate

- General Terminology
 - Uncontrolled alpha emission: 1-20 alpha/cm²/hr
 - Low alpha emission: 0.02 alpha/cm²/hr
 - Ultra low alpha emission: 0.002 alpha/cm²/hr
Assume alpha particles are emitted from the bump reflowed with pre-solder.

Two emission points for alpha particles will be simulated:

- Directly under the UBM
- On the bump

Two emission energies for simulation:

- Typical energy = 6.4MeV
- Highest energy = 8.9MeV
Scenario 1: Alpha Directly Under UBM

- Layers above active silicon
 - UBM
 - 9 layers of metallization at 50% metal density

- Results for 2 energy levels
 - 6.4 MeV alpha particles will unlikely reach the active silicon
 - 8.9 MeV alpha particles will likely reach the active silicon
 - Conclusion: Most alpha particles originating under the UBM will NOT cause soft errors.
Scenario 2: Alpha from Solder Bump

- **Layers above active silicon**
 - 20 μm of underfill
 - 9 layers of metallization at 50% metal density

- **Results for 2 different energies**
 - 6.4MeV alpha particles will penetrate into the silicon with a max lateral range of 18 μm
 - 8.9MeV alpha particles will penetrate into the silicon with a max lateral range of 51 μm
 - Conclusion: Most alpha particles originating from the edge of the bump will likely cause soft errors.
Soft Error Locations on Two Actual Devices

- Bit errors locations with ULA **eutectic solder** bump, uncontrolled alpha presolder
- Blue circle: outline of the UBM pad
- Red diamond: bit errors overlayed onto one solder bump

- Bit error locations with ULA **high Pb bump**, uncontrolled alpha presolder
- Bit errors are mapped with respect to the center of the bump
- All errors are located around the perimeters of the solder bumps
Simulated Range and Soft Error Location

- Most soft errors are within simulated range of typical high energy alpha particle

![Diagram showing simulated range and soft error location](image-url)
Uncontrolled Alpha Presolder Effect Soft Errors

- **ULA eutectic bump with uncontrolled alpha eutectic presolder**
 - Both solder melts and diffuse into each other
 - High alpha emitting presolder will end up near the silicon surface

- **ULA high lead bump reflow with uncontrolled alpha eutectic presolder**
 - Eutectic presolder melts and wicks along the sides of the bump
 - High alpha emitting presolder will reflow to near the silicon surface

Cross section of high lead bump reflowed with eutectic presolder

Eutectic solder after reflow is 17um from die surface

Note: die is on bottom
ULA Presolder Effect on Soft Errors

• By converting to ULA pre-solder, a 50x reduction in soft error rate was achieved.

• For flip chip components, alpha emissivity of all packaging materials must be controlled to reduce overall soft error rates.

<table>
<thead>
<tr>
<th>Pre-solder</th>
<th>Soft Error Rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Un-controlled Alpha emissivity</td>
<td>503,000 FITs</td>
</tr>
<tr>
<td>ULA (<0.002 alpha/cm2/hr)</td>
<td>10,500 Fits</td>
</tr>
</tbody>
</table>
Conclusion

- Simulations confirms soft error locations are within the range of Alpha particles emitted reflowed bump:
 All bit failure locations are an annulus around the bump

- Uncontrolled alpha emission eutectic presolder
 Reflows and mixes with eutectic bumps and cause Soft Errors
 Reflows around the sides of high lead solder bumps and cause Soft Errors

- System tests confirmed that replacing the uncontrolled alpha emission presolder with ULA presolder significantly reduces the soft error rate