Roll-to-roll Manufacturing in Electronics: Making it work!

IEEE CPMT lunch meeting
Texas Instruments Conference Center, Santa Clara
January 10, 2017
Peter Salmon, Presenter

Outline

- Perspectives
- A glimpse of the future
- Things we already know
- The proposed technology
- Technology comparisons & wrap-up
Perspectives

- The rotary press is a kind of Roll-to-roll (R2R) machine that’s been around a long time
- Gravure printing, wherein an image is engraved on a rotating drum, was first used to print bank notes in 1772 in Germany
- R2R is fundamentally different from batch processing – it is a continuous process that can lead to agile manufacturing and increased automation. It could provide 10X reduction in cost. Accordingly, it has been pursued by multiple parties and technological disciplines
- Although passive RFID tags have been a spectacular success (at around 12 cents each), not many complex circuits are produced today in volume
- Current state-of-the-art for R2R is a production ink-jet system costing ~ $500,000, or a gravure press costing around $1,000,000 (and requiring cylinders costing around $5,000 each)

A glimpse of the future

Complex PCB

R2R Complex Electronic System
Seven things we already know

1. Electrophotography

- In a Xerographic printer a static latent image can be developed using dry toner to produce images with good resolution.
- The surface potential on the photoconductor typically varies by 70-90 V.
- A typical toner particle is 10 µm in diameter, has a charge-to-mass ratio of 12 µC/gm, electrical charge of 8 fC (50,000 electrons)*
- 5 µm polymerized toners have been produced in volume.

* Provides a benchmark for the proposed process.
II. Ion Implantation

- Ion implantation machines can be adapted to embed positive and negative charges in a substrate using scanning beams.
- Electron and proton beams can penetrate several millimeters through air.
- Such beams may provide a good way to prepare target substrates with embedded alignment patterns and index marks, ahead of a production run.
- In some systems the beams may be used to program the pattern of a layer to be deposited - see U.S. Pat. 9,227,220 issued Jan. 2016.

III. Through Silicon Vias (TSVs)

- Make electrical connections on wafer back side, so as not to interfere with image formation.
- Provide precision alignment between features on front and back side of wafer.
IV. Force between charged alignment features

- The normal force between parallel plates of a capacitor is known
- \[F = \frac{k\varepsilon_0 AV^2}{2d^2} \]
- \(F = \) force in Newtons, \(k = \) dielectric constant, \(\varepsilon_0 = \) permittivity of free space, \(A = \) area, \(V = \) voltage, \(d = \) separation
- For the case of 200mm wafers we can generate a force of around 1 lb between opposing alignment features
- This force is judged adequate to provide **active registration** between opposing substrates, especially considering some special techniques to reduce friction between them

Comment:
When seeking to couple devices, magnetic attraction is usually the first thing that comes to mind. However, magnets typically require 3D implementations, while electrostatic attraction can be accomplished using planar charge distributions.

V. Particle charging, for the case of 5µm particles

- **Non-conductive particles**
 - Charging by friction

- **Conductive particles**
 - Charging by induction
VI. Encapsulated Particles (like encapsulated printer toners)

- Encapsulated particles have been produced using a polymerizing process to create spherical particles
- The shell material can potentially be tribo-active for charging, and removable after deposition using a finishing process
- Standardized encapsulated particles can produce similar size and charging characteristics across a wide range of deposition materials
- Spherical particles act like ball bearings, producing a lubricating effect in the proposed system

VII. Alignment via surface tension of solder

As a point of comparison, a modern gravure printer has an Overlay Printing Registration Accuracy, OPRA, of around 40 µm in the printing direction and 16 µm in the perpendicular direction.
The Proposed Technology

The wafer is used in the R2R manufacturing system - it is not diced into separate chips.

Note:
We can program the capacitors with varying charge values, according to the pattern to be created. This what leads to an agile manufacturing system, not requiring any traditional masks.

The wafer is used in the R2R manufacturing system - it is not diced into separate chips.

Note:
We can program the capacitors with varying charge values, according to the pattern to be created. This what leads to an agile manufacturing system, not requiring any traditional masks.
Fault tolerance

- To achieve good yield at the wafer level, as opposed to the normal case comprising relatively small-sized chips, a fault tolerant architecture and redundant circuit elements can be used.

- A cell size for capacitor plates may be set at a small dimension, say 8 µm, while the size of the smallest circuit feature is set larger, say 24 µm. Then a single point failure of an 8x8 µm cell within a 9-cell feature, 24x24 µm, should be acceptable, after fusing a deposited layer for example.

- We can also provide redundant address decoders, and switch from the primary A-decoder to the backup B-decoder whenever we have difficulty addressing a cell.

- System logic and memory will be provided using special-purpose chips on the back side of the wafer, including microprocessor, RAM, flash memory, and programmable voltage sources. If any of these chips prove to be defective, they can be replaced.

8µm capacitor cell, with 5µm deposition particle

By comparison, a human hair has a diameter of around 80 µm.
3D model of deposited spheres – idealized view - 5µm cells

- Black represents positively charged cells
- Negatively charged deposition particles
- White represents negatively charged cells

In practice, deposition particles are somewhat irregular
Range of deposition particles: Macro, Micro, and Nano

- 5µm standardized spheres as macro particles
- Charge control agents, CCAs, and flow control agents, FCAs, are probably required with these larger particles
- Method is adaptable to macro, micro, and nano-scale particles
- Micro and nano-scales include:
 - gas ions and polar molecules for atomic or molecular layer deposition
 - charged or polar nano-particulates
- Particles may be delivered in gas, liquid, or powder form

Simulation of imaging potential

- 5nm ≤ diameter ≤ 5µm - a huge range
Alignment: “Active Registration”

- Approximate overall alignment using mechanical transport system
- Precision local alignment using embedded charge patterns; target substrate is *loosely draped*
- Lowered friction using spherical particles and modulated decoupling force
- Restoring alignment force is proportional to local misalignment
- Alignment method is effective while opposing substrates are either stationary or moving

Deposition Stations: Phase 1: Imaging of Macro Particles

Note
The source material can also be delivered as an airborne powder, a liquid, or polar gas molecules, or ionized gas (plasma)
Deposition Station: Phase II: Transfer & Fusing

- The target substrate is accessible for providing additional processing steps
- Physical processing may include rolling, for smoothing or compressing a deposited layer
- Heat processing, for curing or annealing
- Radiation processing, e.g. UV for curing a deposited layer
- Laser processing, to vaporize a binding material, or melt particles to form a continuous solid
- Coating of a conforming layer, which may be selectively reactive with an underlying layer

Deposition Station: Phase III: Finishing

- The target substrate is accessible for providing additional processing steps
- Physical processing may include rolling, for smoothing or compressing a deposited layer
- Heat processing, for curing or annealing
- Radiation processing, e.g. UV for curing a deposited layer
- Laser processing, to vaporize a binding material, or melt particles to form a continuous solid
- Coating of a conforming layer, which may be selectively reactive with an underlying layer
Example of Thin Film Transistor, TFT

- Potentially use metal oxide as semiconductor; combustion processing
- Follow lead of Myung-Gil Kim et. al at Northwestern University and Polyera Corp.

Example of final product: Product Evolution

<table>
<thead>
<tr>
<th>Functional Layers</th>
<th>Product Evolution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Conductors and dielectrics</td>
<td>High resolution FPC</td>
</tr>
<tr>
<td>Add resistors, iron, other mat'ls</td>
<td>Integrated passives</td>
</tr>
<tr>
<td>Add flip chips</td>
<td>Hybrid Electronic System, HES</td>
</tr>
<tr>
<td>Add TFTs</td>
<td>Integrated electronic system</td>
</tr>
</tbody>
</table>
Compact Pilot Manufacturing System in a Vacuum Chamber

- NCDS = Non-conductive deposition station
- CDS = Conductive deposition station
- TFTS = Thin Film Transistor station
- FCAS = Flip Chip Assembly subsystem

Notes:
1) Since oxygen and water vapor are often toxic to deposition materials, it is usually much easier to develop materials that will be deposited in vacuum.
2) Following experience with vacuum depositions, air-stable materials may become viable.

- L ~ 2m; W ~ 0.25m; H ~ 0.25m; Vol ~ 0.13 m³ = 4.5 ft³
- Low cost vacuum system with fast pump time
- Good for pilot production

Proposed full-up production system

- Flexible web may be 1.5 meters wide for example
- Finishing stations may be used for heat curing, laser processing, rolling, coating, etc.
- Complex electronic systems may include novel features that are not currently available in any form
Technology Comparisons & Wrap-up

<table>
<thead>
<tr>
<th>Product Attribute</th>
<th>PCB</th>
<th>NuTech</th>
<th>Chip</th>
</tr>
</thead>
<tbody>
<tr>
<td>Substrate</td>
<td>FR-4</td>
<td>PET or Polyimide</td>
<td>Silicon</td>
</tr>
<tr>
<td>Process</td>
<td>Batch</td>
<td>Roll-to-roll</td>
<td>Batch</td>
</tr>
<tr>
<td>Avail. Substrate area</td>
<td>~ 1200 sq cm</td>
<td>~ 100 sq cm</td>
<td>~ 1 sq cm</td>
</tr>
<tr>
<td>Line/Space (μm)</td>
<td>100/100</td>
<td>24/24</td>
<td>.01/.01</td>
</tr>
<tr>
<td>Time for design turn</td>
<td>~ 1 week</td>
<td>A few hours*</td>
<td>~ 2 months</td>
</tr>
<tr>
<td>Interconnect speed</td>
<td>Low</td>
<td>Medium</td>
<td>High</td>
</tr>
<tr>
<td>System cost</td>
<td>Medium</td>
<td>Low</td>
<td>High</td>
</tr>
<tr>
<td>System Integration level</td>
<td>High</td>
<td>Highest</td>
<td>Low</td>
</tr>
</tbody>
</table>

* Each layer is electronically programmed as a bit pattern in semiconductor memory; the bit pattern drives the charge image in the capacitor array of the charge array wafer, and this defines the physical dimensions of the deposited layer.
Versatility enabled by programmable charge array wafers

<table>
<thead>
<tr>
<th>Deposition species</th>
<th>Pixel size of deposition</th>
<th>Surface potential</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gas molecules</td>
<td>1 x 1 µm</td>
<td>±3V</td>
</tr>
<tr>
<td>Macro particles</td>
<td>24 x 24 µm</td>
<td>±20V</td>
</tr>
</tbody>
</table>

Pixel size and surface potential are both programmable. A charge wafer could theoretically be created with a base cell size of 1 x 1 µm for example, with larger pixels defined in software. The programmed voltage at each pixel can then be adjusted according to the pixel size.

Informed by experience with electrophotography, we can solve fundamental imaging problems, for example adjusting the programmed voltage at edge pixels versus interior pixels of large black or white image features.

Compare with custom silicon wafer

<table>
<thead>
<tr>
<th>Attribute</th>
<th>Custom Silicon Wafer</th>
<th>Proposed Flexible System Product</th>
</tr>
</thead>
<tbody>
<tr>
<td>Minimum feature size</td>
<td>28 nm</td>
<td>24µm 1</td>
</tr>
<tr>
<td>Substrate</td>
<td>silicon</td>
<td>polyimide</td>
</tr>
<tr>
<td>Format</td>
<td>200 mm circle</td>
<td>100 mm square</td>
</tr>
<tr>
<td>Non-refundable engineering cost</td>
<td>$70M</td>
<td>$6,000 2</td>
</tr>
<tr>
<td>Unit manufacturing cost</td>
<td>$20k</td>
<td>$20 3</td>
</tr>
<tr>
<td>Lead time for new design</td>
<td>2 months</td>
<td>a few hours</td>
</tr>
<tr>
<td>Lead time for additional production units</td>
<td>1 month</td>
<td>a few hours</td>
</tr>
<tr>
<td>Level of integration</td>
<td>Medium 4</td>
<td>High 5</td>
</tr>
</tbody>
</table>

1. Assumes fault tolerant combination: capacitor cells 8x8µm, and pixels 24x24µm
2. 12 hours technician time to program charge array wafers and setup system
3. 12 patterning/finishing steps, each speculated to cost 10 cents per square inch, attached chips not included
4. Typically does not include embedded passives or power devices
5. Includes high speed interconnects, novel structures, passives, power devices, and flip chips

Comment:
Custom silicon wafers have been produced for 45 years. Their performance is astounding, but their cost is very high.
References:

- Patent pending, "Method and System for Manufacturing using a Programmable Patterning Structure", filed as a “Track One” utility patent application on September 19, 2016

Business Development

- **Manufacturing**: Vendors are available for critical components:
 - semiconductor process, wafers, test chips
 - web transport systems
 - ion implantation equipment and services
 - model-building and prototype development

 Many degrees of freedom

 - need customer input

- **Database of Potential Early Adopters**: Under development
 - we have identified 25 US manufacturers and 22 non-US manufacturers in the Device Manufacturer/System Integrator space

- **Advisory Board**:
 Three world-class advisors have joined the board to date. Their specialties are:
 - Electrophotography & Deposition Materials
 - R2R Mechanical Systems
 - Ion Implantation

- **Partners**: Discussions in progress
Contact info

Peter C Salmon, LLC dba Salmon Engineering
1885 S Springer Rd Unit B
Mountain View, CA 94040-4052
USA

(650) 814-1076 (cell)
peter@petersalmon.com
http://petersalmon.com