TIBIAL FORCES MEASURED IN VIVO AFTER TOTAL KNEE ARTHROPLASTY

Darryl D. D’Lima, MD
Clifford W. Colwell Jr, MD

Presented at the
San Diego Chapter, CPMT Society Seminar
“Packaging of Biomedical Electronic Devices”
January 22, 2005

Shiley Center for
Orthopaedic Research & Education

Introduction

• Tibial Forces
 – PE Wear & Cold Flow
 – Stress Distribution
 – Stress Transfer to Bone
Modeling Tibia Forces

- Complex Geometry
- Multiaxial
- Soft tissues
- Bi-articular muscles

In Vitro

- Normal knees
 - Perry, JBJS-A, 1975
 - Singerman, J Biomech, 1999
- TKA
 - Kaufman, J Biomech, 1996
In Vitro

Normal knees
- Singerman, J Biomech Eng, 1999

In Vivo

• Hips
 - Rydell, Acta Orthop Scand, 1966
 - English, J Biomed Eng, 1979
 - Davy, JBJS-A, 1988
 - Hodge, JBJS-A, 1989
 - Bergmann, J Biomech, 1993
Objective

Measure tibial forces in vivo using a tibial component instrumented with load cells
Instrumented Tibial Tray

- Kaufman, J Biomech 1996

Instrumented Tibial Tray

- Kaufman, J Biomech 1996
Instrumented Tibial Tray

- Kaufman, J Biomech 1996

Instrumented Tibial Tray

- Kaufman, J Biomech 1996
Instrumented Tibial Tray

- 8 strain gauges
- Full wheatstone bridge
- 2x240 Ω gauges per arm

Force transducers
- Kaufman, J Biomech 1996

Wireless Prototype

- Microtransmitter
- Antenna

- D’Lima, ORS 1999
Telemetry

Multiplexer
A/D conversion

Power coil

Microprocessor
Instrumented Prosthesis
(See separate assembly videos)

Instrumented Prosthesis

(See separate assembly videos)

Instrumented Prosthesis
Instrumented Prosthesis

(See separate assembly videos)
Safety Testing

- Antenna
Safety Testing

Electron Beam Weld

Structural Testing

Posts
Hermeticity testing

- Weld
- Antenna

(See separate surgery video)

Surgery
Feb. 27, 2004
Before Soft Tissue Balance

(See separate balance videos)

After Soft Tissue Balance

(See separate balance videos)
1994 - 2004

Post Operative Rehab

• Passive Leg Raise
 – 0.34 BW
Post Operative Rehab

- Active Leg Raise
 - 0.84 BW

Post Operative Rehab

- Standing
 - 1.17 BW
(See separate post-op video)

Post Operative Walking

<table>
<thead>
<tr>
<th>Time</th>
<th>Normalized BW</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
</tr>
</tbody>
</table>

Walking

- Postop Day 3
 - 1.26 BW

Normalized BW

Time
Walking

- Postop Day 6
 - 1.7 BW

Walking

- 3 weeks
 - 2.13 BW
Walking

(See separate walking video)

6 weeks

Walking

- 6 weeks
- 2.13 BW
Mean Peak Tibial Forces

Walking: Center of Force

- Heel Strike
- Mid Stance
- Toe Off
Walking: Center of Force

Effect of Shoes

Normalized BW

Percent Gait Cycle
Stair Climbing

Stair Ascent

(See separate stair-climbing video)
Chair Rise

- Tibial Forces
- Ground Reaction Forces
- Knee Kinematics

Knee Flexion (degrees) vs. Normalized BW for Tibial Force and Ground Reaction Force.
Summary

- Instrumented prosthesis sensitive to intraop soft tissue balance
- Tibial forces ~ Knee moments
- Tibial forces - Lower
On Going

- Athletic Activities
 - Golf
 - Doubles Tennis
 - Ski

- Fluoroscopic Analysis
 - Tibiofemoral Contact
- Knee Models
Next Generation

- 6 components
- Faster Data Update
- RF range

*Kirking, ISTA 2003, San Francisco
*Kirking, J Biomechanics, in review, 2004

Shantanu Patil, MD
Juan Hermida, MD
Nick Steklov, BS
Bao Nguyen, BS
Pam Pulido, RN, BSN
Mary Hardwick, RN

Shiley Center for Orthopaedic Research & Education

Funding
- OREF
- Knee Society
- Scholl Foundation
- Scripps Clinic Intramural Grants