Clock Distribution for Multi-GHz Microprocessors

Frank O’Mahony
frank.o’mahony@intel.com
Circuit Research Lab (CRL)
Intel Corporation, Hillsboro, OR

Future Directions in IC and Package Design Workshop (FDIP)

October 26, 2003
I. Introduction to clock distribution
II. Overview of conventional clock networks
III. Scaling of clock networks
IV. Directions for global clock networks
V. Conclusions
I. Introduction to clock distribution

II. Overview of conventional clock networks

III. Scaling of clock networks

IV. Directions for global clock networks

V. Conclusions
Conventional Clock Networks

- Clock networks have a hierarchy
- Designed to minimize timing uncertainty, power, wire and silicon resources and maximize circuit performance
Clock Network Figures of Merit (I)

- Static timing error
- “Local” skew more important than “global” skew

- Dynamic timing error
- Divergence from nominal cycle time (period jitter)

$\text{jitter} + \text{tskew} \approx 0.10 \times \text{tclock}$
Skew and Jitter Accumulation

- Skew and jitter \propto Delay
 - Inverter delay
 - Power supply variation ($1\%t_{\text{delay}}/\%V_{\text{dd}}$)
 - Processing mismatch
 - Interconnect delay
 - Processing mismatch
 - Crosstalk
- Maximum slew rate possible reduces the impact of noise
 - This trades off with power, wire width, and number of buffer stages
- Skew and jitter are dominated by the global and regional levels of the clock distribution network
Skew and Jitter Accumulation

- Skew and jitter \propto Delay
 - Inverter delay
 - Power supply variation ($1\%t_{\text{delay}}/\%V_{\text{dd}}$)
 - Processing mismatch
 - Interconnect delay
 - Processing mismatch
 - Crosstalk
- Maximum slew rate possible reduces the impact of noise
 - This trades off with power, wire width, and number of buffer stages
- *Skew and jitter are dominated by the global and regional levels of the clock distribution network*
Clock distribution is an exponential power fanout network ($\sim 10^5$)

- 20-40% of total microprocessor power
- *Power for local clock distribution is dominated by the local clock distribution ($\sim 10x$ the power in the other parts)*
I. Introduction to clock distribution

II. Overview of conventional clock networks

III. Scaling of clock networks

IV. Directions for global clock networks

V. Conclusions
Conventional: Global

- H-tree is the dominant design
 - Provides nominally zero skew
 - Tunable for uneven loading
 - Easy to design
- Low fanout minimizes dispersion and timing uncertainty
- Interconnects are carefully designed
 - Differential, shielded, interleaved
 - RLC models
Conventional: Regional

- No clear winner
 - Can have a significant impact on power and timing
- Interconnects may be shielded
- Hybrid clock networks
 - H-tree with grid

Conventional: Local

- Designed by macro owner using automatic synthesis tools
 - Change with loading changes within the macro
 - Less regular in structure than the upper levels of the hierarchy
- Clock may be a derivative of global clock
Example: 1GHz PowerPC, Y1999

<table>
<thead>
<tr>
<th></th>
<th>Y1999</th>
</tr>
</thead>
<tbody>
<tr>
<td>PowerPC</td>
<td></td>
</tr>
<tr>
<td>Clock frequency</td>
<td>1.15GHz</td>
</tr>
<tr>
<td>Power</td>
<td>112W</td>
</tr>
<tr>
<td>Leff</td>
<td>0.12um</td>
</tr>
<tr>
<td>Functions/chip</td>
<td>19M</td>
</tr>
<tr>
<td>Chip area</td>
<td>256mm^2</td>
</tr>
<tr>
<td>Clock pins</td>
<td>2339</td>
</tr>
<tr>
<td>Clock load</td>
<td>450-550pF</td>
</tr>
<tr>
<td>Clock node density</td>
<td>500um</td>
</tr>
<tr>
<td>Levels of H-tree</td>
<td>5</td>
</tr>
<tr>
<td>Global buffers</td>
<td>1,2</td>
</tr>
<tr>
<td>Sector buffers</td>
<td>16</td>
</tr>
</tbody>
</table>

S. Poslusnzy et.al “Timing Closure by Design,’ A High Frequency Microprocessor Design Methodology”, DAC’00

~500um
Outline

I. Introduction to clock distribution
II. Overview of conventional clock networks
III. Scaling of clock networks
IV. Directions for global clock networks
V. Conclusions
Microprocessor Scaling Trends

- Clock frequency
 - Maintain 16 FO4’s between latches
- Area
 - 310mm^2 ($\sim 17.6\text{mm} / \text{side}$)
- Power
 - V^2f product keeps pace with power prediction
- Device matching will get worse

Data based on International Technology Roadmap for Semiconductors (ITRS), 2001.
Scaling Global H-trees

Advantages
- Easy to design and layout
- Low local skew
- Design flexibility
- Skew in a sector will be low

Disadvantages
- Skew and jitter accumulate
- Latency does not scale
- Interconnect effects
I. Introduction to clock distribution

II. Overview of conventional clock networks

III. Scaling of clock networks

IV. Directions for global clock networks
 A. H-tree
 B. Coupled oscillator arrays
 C. Standing-wave

V. Conclusions
Outline

I. Introduction to clock distribution
II. Overview of conventional clock networks
III. Scaling of clock networks
IV. Directions for global clock networks
 A. H-tree
 B. Coupled oscillator arrays
 C. Standing-wave
V. Conclusions
Optimized buffered H-tree

Approach: Use an algorithm and fast simulator to optimize H-tree timing uncertainty and power
- Use adjacent return paths for all tree wires
- Short together clock at local grid
- Simulate worst-case buffer and wire delay variation using RLC wire models

Advantages
- Regular geometric pattern is easy to design, analyze, and lay out
- Well known design issues since it has been the industry choice for clock distribution
- Local skew only determined by a small number of the buffers and wires
- Accommodates very nonuniform loading
- Paths can be intentionally skewed to improve the performance of some macro blocks
- Supports DFD/DFT

Disadvantages
- Operates open-loop – no skew calibration
- Jitter is accumulated along the clock network
- Clock latency does not scale well

Clock frequency: 1.3GHz
Skew: 25ps (3.3%) measured
Jitter: 30ps p-p (3.9%) measured
<5ps (0.7%) for PLL
Buffered H-tree with deskew

- **Approach:** Add deskew buffers to correct for within-die process variations
 - Distribute two clock signals: the core clock and the reference clock
 - Reference clock has ideally balanced loading
 - Calibrate deskew buffers in the core clock path based on the timing of the reference clock
- **Advantages**
 - Same as for buffered H-tree
 - Compensates for within-die process variations and for modeling inaccuracies
 - Deskew buffers can be programmed to add and subtract delay manually for debug or to improve the performance of specific macros
- **Disadvantages**
 - Jitter is still accumulated along the clock network
 - Added complexity increases clock latency
 - Extra global clock network must be routed, using wire and silicon resources and power

S. Tam et al. “Clock generation and distribution for the first IA-64 microprocessor”, JSSC, November 2000

Clock frequency: 800MHz
Skew: 28ps (2.2%) measured
Package level distribution

- **Approach:** Use package-level transmission lines
 - Push part of the global clock network to the package level
 - Conventional H-tree
 - Inject clock to chip at multiple points

- **Advantages**
 - Same as for buffered H-tree
 - Low wire loss and dispersion due to low-loss wires
 - Reduced area requirements
 - Potential for “energy recycling” with resonant lengths of transmission line

- **Disadvantages**
 - Solder-bump parasitics affect signal
 - ESD protection necessary on clock pad
 - Complicates testing

Other Variations of H-tree

• **Shorting bars**
 – Phase-averaging similar to a grid at regional level
 – Bars become less effective at high frequencies
 – N. Bindal et.al., “Scalable sub-10ps skew global clock distribution for a 90nm multi-GHz IA microprocessor,” ISSCC’03.

• **Supply-invariant buffers**
 – Differential inverter buffers for common-mode rejection
 – Supply noise-tolerant inverters with loading that is inversely affected by power supply variations

• **On-chip transmission lines**
 – Use extremely wide on-chip interconnects and large drivers
 – Extremely expensive for area and power

• **Resonant H-tree**
 – Use multiple inductors to resonate out capacitance for reduced power dissipation
 – Unclear how this will effect skew and jitter
 – S. Chen et.al, “Design of resonant global clock distributions,” ICCD’03
I. Introduction to clock distribution

II. Overview of conventional clock networks

III. Scaling of clock networks

IV. Directions for global clock networks
 A. H-tree
 B. Coupled oscillator arrays
 C. Standing-wave

V. Conclusions
PLL Array

- **Approach:** Use a network of coupled PLLs to generate and distribute the sector clocks
 - Multiple PLLs generate clock signal
 - Use phase detectors to lock the PLLs
- **Advantages**
 - Coupled oscillator array reduces jitter
 - Eliminates accumulated jitter above of the bandwidth of the loop filter and replaces it with the jitter of the PLL
 - PLL jitter scales well with technology
 - Skew is determined by mismatches in a phase detector, not by buffer mismatches
- **Disadvantages**
 - Resources needed for PLLs (VCO, PD, loop filter); this is compensated by the elimination of the buffers and wiring for a global clock network
 - To avoid “mode-lock”, PLLs are controlled by an analog signal that is distributed from the PD to the VCO
 - Does not support DFD/DFT

V. Gutnik and A. Chandrakasan “Active GHz clock network using distributed PLLs”, ISSCC 2000

Clock frequency: 1.3GHz
Jitter: <30ps p-p (3.9%) measured
VCO Array

- **Approach**: Use a network of coupled VCOs to generate and distribute the sector clocks
 - Multiple VCOs generate clock signal
 - Incorporate the VCO grid into a PLL

- **Advantages**
 - Coupled oscillator array reduces jitter
 - Eliminates accumulated jitter above of the bandwidth of the loop filter and replaces it with the jitter of the PLL
 - VCO jitter scales well with technology
 - Skew is determined by mismatches in a phase detector, not by buffer mismatches

- **Disadvantages**
 - Oscillator detuning causes skew
 - Does not support DFD/DFT
 - Sensitive to noise on globally distributed VCO control signal

Clock frequency: 435MHz
Skew: 17ps (0.7%) measured
Jitter: 170ps (7.4%) measured

“Rotary” oscillator array

- **Approach:** Use coupled, distributed oscillators to span a chip
 - Differential traveling waves that are in-phase oscillate around the network
 - Cross-coupled inverters “boost” the clock signal instead of regenerating it completely
 - Phase varies linearly around each loop

- **Advantages**
 - Coupled oscillator array reduces jitter
 - Clock signals naturally phase-lock at junctions between rings
 - Has the potential for low power since wave energy cycles around the ring
 - Good noise immunity since delay does not depend on inverter delay

- **Disadvantages**
 - Clock frequency is determined by on-chip dimensions and cannot be tuned
 - Does not support DFD/DFT

Clock frequency: 1GHz
Jitter: 5.5ps rms (5.5ps) measured
Outline

I. Introduction to clock distribution
II. Overview of conventional clock networks
III. Scaling of clock networks
IV. Directions for global clock networks
 A. H-tree
 B. Coupled oscillator arrays
 C. Standing-wave
V. Conclusions
Standing-wave (Salphasic) Clock

- Distribute clock as a standing wave

Advantages
- Constant phase with position
- No dispersion effects

Disadvantages
- Amplitude varies with position
- Performance degraded by interconnect loss
- Requires a clock buffer (limiting amplifier) to convert from sinusoid to digital

Clock frequency: 160MHz
Skew: 0.17ns (2.7%) measured
Standing wave clock network

- **Approach:** Use coupled, distributed oscillators to span a chip
 - Differential standing waves that are in-phase oscillate around the network
 - Cross-coupled pairs “boost” the clock signal instead of regenerating it completely

- **Advantages**
 - Coupled oscillator array reduces jitter
 - Adjacent rings phase-lock to provide low local skew
 - Phase is constant around loop
 - Good noise immunity because delay does not depend on inverter delay
 - Allows injection of external clock over a limited bandwidth

- **Disadvantages**
 - Clock frequency range is determined by on-chip dimensions (but is tunable)
 - Requires a sine-to-square converter between global and sector clock trees
 - Requires nearly uniform loading
 - Does not support DFD/DFT

Clock frequency: 10GHz
Skew: 1.5ps (1.5%) measured
Jitter: 1ps rms (1%) measured
5ps p-p (5%) measured

F. O’Mahony et.al., “10GHz clock distribution using coupled standing-wave oscillators”, ISSCC’03.
F. O’Mahony et.al, “A 10GHz global clock distribution using coupled standing-wave oscillators”, JSSC’03.
Conclusions

1. Conventional global and regional clock distribution networks don’t well.
 - Skew and jitter must decrease while latency, mismatch, and noise increase.
 - On-chip wires limit clock network performance.

2. Jitter (not skew) will probably become the hardest specification to meet for clock networks.

3. Continuing innovations to conventional techniques have extended their usefulness past 1GHz clock frequencies.

4. A combination of architectural changes and more digital logic will likely extend clock distribution to 10GHz.

5. The industry seems willing to explore many options before breaking the globally synchronous paradigm.
Summary of clock networks

<table>
<thead>
<tr>
<th>Global clock dist.</th>
<th>Product?</th>
<th>Clock freq. (MHz)</th>
<th>Dim. (mm)</th>
<th>Skew (%τ<sub>clk</sub>)</th>
<th>Jitter (%τ<sub>clk</sub>)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coupled oscillators - CROs</td>
<td>no</td>
<td>53</td>
<td>1.4 x 1.4</td>
<td>n/a</td>
<td>n/a</td>
</tr>
<tr>
<td>Standing waves (board level)</td>
<td>no</td>
<td>160</td>
<td>19 in.</td>
<td>175 ps (2.8%)</td>
<td>n/a</td>
</tr>
<tr>
<td>Distributed VCOs</td>
<td>no</td>
<td>435</td>
<td>7.2 in.</td>
<td>17 ps (0.7%)</td>
<td>170 ps (7.4%)</td>
</tr>
<tr>
<td>Coupled oscillators - Rotary H-tree - DSEH & diff. signal</td>
<td>no</td>
<td>965</td>
<td>3.0 x 3.0</td>
<td>n/a</td>
<td>5.5 ps rms (0.5%)</td>
</tr>
<tr>
<td>H-tree - Optical</td>
<td>Intel Itanium2</td>
<td>1200</td>
<td>14.1 x 18.6</td>
<td>52 ps (6.2%)</td>
<td>n/a</td>
</tr>
<tr>
<td>Distributed PLLs</td>
<td>IBM Power4</td>
<td>1300</td>
<td>20 x 20</td>
<td>25 ps (3.3%)</td>
<td>30 ps P-P (3.9%)</td>
</tr>
<tr>
<td>H-tree - Shorting bars</td>
<td>Intel Pentium 4</td>
<td><5000</td>
<td>10.2 x 10.7</td>
<td>n/a</td>
<td>n/a</td>
</tr>
<tr>
<td>H-tree - On-chip LC trans. lines</td>
<td>no</td>
<td>5000</td>
<td>10.0 x 10.0</td>
<td>20 ps (10%)</td>
<td>n/a</td>
</tr>
<tr>
<td>Standing waves and coupled oscillators</td>
<td>no</td>
<td>10000</td>
<td>3.6 x 3.6 (unfolded)</td>
<td>2.5 ps (2.5%)</td>
<td>0.9 ps rms<sup>g</sup> (0.9%)</td>
</tr>
</tbody>
</table>

^a Board-level clock distribution on three 19 in. equipment racks.

^b Maximum distance between VCOs on test chip.

^c A grid of four 3.4GHz rotary oscillators was also demonstrated but did not operate correctly due to layout issues.

^d Measurements reflect accumulated skew and jitter through global and regional clock distributions.

^e The PLL jitter was measured to be below 5ps, less than 17% of the total jitter.

^f For tuned grid with medium (125 mV) injection amplitude, the skew for low (63 mV) injection amplitude was 1.5 ps.

^g Jitter added by clock network, not including the clock source which had 1.5 ps rms and 10 ps P-P jitter.