Electromagnetic and Circuit Co-Simulation and the Future of IC and Package Design

Zoltan Cendes
Wireless Consumer Devices

System SI Predicts Receiver Desensitization

System EMI Predicts Display Anomaly

New devices integrate RF/Analog/Digital with Memory, Graphics, Storage, GSM radio, Bluetooth/802.11x radio, Antenna, LCD, camera, MP3, and broadcast FM

Trend: High performance consumer electronics dominates/drives semiconductor market
System in Package (SiP)

3D SiP SEM Images courtesy of ST Microelectronics

Package on Package (PoP) courtesy Philips Semiconductor

Parameterization of critical interconnect

Trend: Pervasive communications leads to greater integration driving stacked die, package on package (PoP) 3D packaging solutions
Chip/Package/Board Co-Design

Signal Integrity

Trend: Cost/performance targets drive the integration of IC’s, SoCs and SiPs onto low cost printed circuit boards. Chip/Package/Board Co-design is required.
Chip/Package/Board Co-Design
Power Integrity

Trend: Cost/performance targets drive the integration of IC’s, SoCs and SiPs onto low cost printed circuit boards.

Courtesy of Xilinx Inc. and Dr. Howard Johnson “Virtex™-4 Power System Performance”
“Adaptive” Mesh Refinement
Adaptive Mesh – Package on PCB
Ultra-Fast Finite Element Simulation of Planar Electromagnetic Structures

- Complex, multi-layer PCB’s and packages are predominantly planar structures
- Planar modes and transmission line modes are orthogonal and may be treated separately

![Diagram showing Parallel Plate Modes and Transmission Line Modes]

- Odd
- Even

SIwave
2D for Planes – 3D for Vias

- **Current on bottom plane**
 \[
 \overline{J} = \hat{z} \times \overline{H}
 \]

- **Voltage drop between planes**
 \[
 V = E_z \, d
 \]

- **Power and Ground planes**

\[
\nabla \times \overline{E} = -j \, \omega \mu \overline{H} \\
\nabla \times \overline{H} = (j \, \omega \varepsilon + \sigma_d) \overline{E}
\]
SIwave – FEM Formulation

\[
\frac{1}{(R + j\omega L)} \nabla^2 V - (G + j\omega C)V = I_s
\]

Applying Galerkin’s method

\[
\left[\frac{1}{(R + j\omega L)} S - (G + j\omega C)T \right][V] = [I_s]
\]

\[
G(\omega) = \frac{k_0 \varepsilon_r \tan(\delta)}{d \eta_0}
\]

\[
R(\omega) = \sqrt{\frac{\eta_0 \mu_r k_0}{2\sigma_m}}
\]

\[
L = \mu d
\]

\[
C = \frac{\varepsilon}{d}
\]

HIGH PERFORMANCE EDA
Vias

Example Stackup

- Solved parametrically using HFSS
- Inductance based on 3D solution
Key Physical Features

- Some 3D features
 - Solderballs and Solderbumps
- Interconnects
 - Transmission lines
 - Vias
 - Circuit elements
- Coupling
 - Trace-to-trace
 - Trace-to-plane
 - Via-to-plane
 - Via-to-via
Example: Package on Board

• 30 cm by 40 cm board
• 26 metallization layers
• 6500 nets, 210 decoupling capacitors
• Courtesy of EMC Corporation
Example: Package on Board

- 30 cm by 40 cm board
- 26 metallization layers
- 6500 nets, 210 decoupling capacitors
- Courtesy of EMC Corporation
Impedance versus Frequency

Z without decoupling capacitors

- Simulation
- Measurement

Frequency (Hz)

Mag(Z) (Ohm)
Xilinx ML481 Test Board

- 8-layer package on 24 layer test board
- Test points are at SMA connectors (Spyholes)
- Lab Measurement by Xilinx and Dr. Howard Johnson, Sigcon
Xilinx FPGA: Virtex-4 LX60 FF1148 Package

- 8-layer flip-chip BGA package
- Single Core
- 34 x 34 mm
- 1148 Balls
Xilinx Virtex-4® FPGA

- AnsoftLinks
 - Cadence (APD, Allegro), Mentor (Boardstation, PowerPCB, Expedition), Sigrity Encore and Zuken CR5000

Access directly from APD

Cadence Advanced Package Designer (APD)
The LX60 FF1148 package is tessellated with a regular array of power and ground pins, called a “Sparse Chevron” pattern. 8 signals : 1 power : 1 ground = min loop area.
Automated Grouped Nodes

- Automated Pin Grouping: pins shorted for easy analysis
- Parts, Pin and Net names preserved
- User can define region for grouping
Xilinx ML481 Test Board

- Virtex-4 FPGA test board
- Board components included
- 24 layer, FR4 Board
- 7.5 in x 20 in
Slwave: Merge Package and PCB

- Cadence APD Package
- Mentor PADS PCB
- Merge .siw files to preserve:
 - All R, L, C Components
 - All IO, IC Discrete Device Footprint and Pin Information
Virtex-4 Package on ML580 Board

- 32 SDRAM I/O
 - 32 I/O ports at pkg bumps
 - 32 I/O ports at SDRAM
 - 16 at top part, 16 at bottom part
- VRM ports
 - 1 for 2.5V supply
 - 1 for VTT supply
- Die power port
 - 1 at 2.5V bumps
- Total: 67 port extraction
- Discrete decoupling capacitors included (package and PCB)
- I/O pull-up resistors to VTT included
Virtex-4 Package on ML580 Board
Board “Spyhole” IO’s

L34 Spyhole SMA

VDO Spyhole SMA
SSO Measured versus Simulated

- 125 MHz Clock, 400 ps edge
- SSO Measured at L34 Spyhole