Chip Multi-Threading Keeps the Data Center Cool

David Greenhill
Distinguished Engineer
Sun Microsystems Inc
david.greenhill@sun.com
Introduction

• Market forces are driving the following
 > More performance
 > More threaded workloads
 > Power limited designs

• Technology is driving
 > Higher power each generation
 > Less performance from frequency gains
 > Good scaling of I/O bandwidth through SERDES

→ This is exploited by Sun Chip Multi-threaded (CMT) Systems
Comparing Modern CPU Design Techniques

- ILP Offers Limited Headroom
- TLP Provides Greater Performance Efficiency
CMT – Multithreaded Cores

Time

Core 8
Thread 4
Thread 3
Thread 2
Thread 1

Core 7
Thread 4
Thread 3
Thread 2
Thread 1

Core 6
Thread 4
Thread 3
Thread 2
Thread 1

Core 5
Thread 4
Thread 3
Thread 2
Thread 1

Core 4
Thread 4
Thread 3
Thread 2
Thread 1

Core 3
Thread 4
Thread 3
Thread 2
Thread 1

Core 2
Thread 4
Thread 3
Thread 2
Thread 1

Core 1
Thread 4
Thread 3
Thread 2
Thread 1

Memory Latency
Compute
Niagara Micrograph and Overview

Features:
• 8 64-bit Multithreaded SPARC Cores
• Shared 3MB L2 Cache
• 16KB I-Cache per Core
• 8KB D-Cache per Core
• 4 144-bit DDR2 channels
• 3.2 GB/sec JBUS I/O

Technology:
• TI's 90nm CMOS Process
• 9LM Cu Interconnect
• 63 Watts @ 1.2GHz/1.2V
• Die Size: 378mm²
• 279M Transistors
• Flip-chip ceramic LGA
CMOS Power

(Ignoring 2nd order terms)

Power = aCV^2F + Leakage (P,V,T)

a = activity factor
C = capacitance of nodes
V = voltage
F = chip frequency
“Niagara” T1 Chip Power

- Fully static design
- Fine granularity clock gating for datapaths (30% flops disabled)
- Lower 1.5 P/N width ratio for library cells
- Interconnect wire classes optimized for power x delay
- SRAM activation control

63W @ 1.2GHz / 1.2V
< 2 Watts / Thread

- SPARC Cores (26%)
- Leakage (25%)
- Wires & Rptrs (17%)
- L2Cache (12%)
- Xbar (6%)
- L2Data (11%)
- L2Buffer Unit
- Crossbar
- Global Clock
- Misc Units
- IOs

Leakage
Floating Point
Wires & Rptrs
L2Tag Unit
L2Buffer Unit
Crossbar
Global Clock
Misc Units
IOs
SPARC Cores

63W @ 1.2GHz / 1.2V
< 2 Watts / Thread
Personal View of Processor Designs

Year

Voltage

Inmos

Transputer

UltraSparc

Niagara
Personal View of Processor Designs

Trend of Mid 1990's not sustainable
Personal View of Processor Designs

Chip Multithreading Effect

- Inmos Transputer
- Ultrasparc
- Niagara

Graph showing voltage and power over the years.
Niagara low power

- Niagara low power style
 - No speculation
 - No out of order
 - No complex branch prediction
 - No predication
 - Short pipeline
 - Moderate clock frequency
 - Static CMOS design
 - Threading to cover memory latency

- Typical competitor
 - Lots of speculation
 - Out of order etc
 - Wide issue
 - Deep pipelines
 - High frequency
 - Lots of dynamic circuits
 - Long stall when memory is accessed
CoolThreads™ Advantages

- Improved reliability with lower and more uniform junction temperatures
 - Increased lifetime
 - Total failure rate reduced by ~8X (vs 105°C)

- Optimized performance/reliability trade-off
 - Frequency guardbands due to CHC, NBTI, etc. reduced by > 55%
 - Reduced design margins (EM/NBTI)
 - Less variation across die
Data Center Constraints

- Many data centers are maxed out
 - Some constrained by cooling limits
 - Others by electrical substations
- Getting new buildings & equipment is expensive
- In some locations e.g. financial centers its impossible
- Performance of the data center is constrained by performance/watt of the servers
Niagara-2

- Double throughput versus UltraSparc T1
 - Maintain Sparc binary compatibility
 - http://opensparc.sunsource.net/nonav/index.html
- Improve throughput / watt
- Improve single-thread performance
- Integrate important SOC components
 - Networking
 - Cryptography
Niagara-2 Chip Overview

- 8 Sparc cores, 8 threads each
- Shared 4MB L2, 8-banks, 16-way associative
- Four dual-channel FBDIMM memory controllers
- Two 10/1 Gb Enet ports w/onboard packet classification and filtering
- One PCI-E x8 1.0 port
- 711 signal I/O, 1831 total
Sparc Core Block Diagram

- **IFU** – Instruction Fetch Unit
 - 16 KB I$, 32B lines, 8-way SA
 - 64-entry fully-associative ITLB
- **EXU0/1** – Integer Execution Units
 - 4 threads share each unit
 - Executes one integer instruction/cycle
- **LSU** – Load/Store Unit
 - 8KB D$, 16B lines, 4-way SA
 - 128-entry fully-associative DTLB
- **FGU** – Floating/Graphics Unit
- **SPU** – Stream Processing Unit
 - Cryptographic acceleration
- **TLU** – Trap Logic Unit
 - Updates machine state, handles exceptions and interrupts
- **MMU** – Memory Management Unit
 - Hardware tablewalk (HWTW)
 - 8KB, 64KB, 4MB, 256MB pages
Dram Data Rates Versus Time

Data Rate Mb/s

Date

01/97 01/99 01/01 01/03 01/05 01/07

SDram-100
Rambus-800
Rambus-1066
XDR-3200
FBDIMM1
FBDIMM2
SDram-133
SDram-100
DDR-266
DDR-400
DDR2-667
DDR3-1066
FBDIMM1
FBDIMM2
Dram Issues

- Niagara I uses DDRII – 400
- Niagara II uses FBDIMM 4Gb/s
 > Higher data rate is good
 > AMB power & cost is a problem
- Need to amortize the serialization cost across more memories
 > Stacking technologies
 > More Dram/DIMM
 > Other configurations of buffers to fanout to DDR DIMMs
Niagara & Niagara II Packages
Future packaging requirements

- Challenges for future packages
- Similar pin counts but:
- Data rates keep increasing to match higher processor performance
- Costs getting squeezed – particularly in entry level servers
At the system level

Yesterdays Vertical System

E10000

- 1997
- 32 x US2
- 77.4 ft³
- 2000 lbs
- 13,456 W
- 52,000 BTUs/hr

Todays Horizontal System

T2000

- 2005
- 1 x US T1
- 0.85 ft³
- 37 lbs
- ~300 W
- 1,364 BTUs/hr

91x smaller
54x lighter
44x cooler
Conclusion

- Chip multithreading does keep the data center cool
- 2 generations of the Niagara processor
- Future challenges
 - Very high data rate interfaces
 - Managing power is an on going challenge at both CPU, Memory and System Levels
Thankyou!

David Greenhill
Distinguished Engineer
david.greenhill@sun.com