Accelerated, Parallelized Integral Equation Techniques for Packaged Microelectronics

Vikram Jandhyala

Founder and CEO, Physware Inc., Bellevue WA And
Associate Professor
Director, Advanced Computational Engineering Lab
Dept of Electrical Engineering University of Washington

Seattle

Acknowledgements

- ACE Lab: Dr. Indranil Chowdhury (Cadence), Dr. Yong Wang (Synopsys), Dr. Chuanyi Yang (Cadence), Ani Siripuram, Arun Sathanur, Ritochit Chakraborty, Ying Li, Mosin Mondal
- Physware, Inc.: Dr. Dipanjan Gope, Dr. Swagato Chakraborty, Dr. Feng Ling, Dr. Xiren Wang, Dr. Junho Cha, Dr. Robert Chao, James Pingenot, Devan Williams
- Sponsors and Collaborators: DARPA, NSF, SRC, INTEL, IBM, NVIDIA, SPAWAR, AFRL, TGIF (UW), WRF, RRF (UW), BOEING, LLNL, DOD (SBIR)

Challenges

- Complexity
- Mixed-signal, broadband, material effects, multiscale crosstalk mechanisms
- Scaling and Scale
- Large system sizes, Smaller features, increased crosstalk and proximity, 3D SoC and SIP, material effects, chip-scale integration
- Variability
- Manufacturing and process variability, yield prediction and control
- Design
- Rapid parametric solution, fast incremental modeling, design cycle acceleration

Approach

- Rapid EM Solvers
- Fast $\mathrm{O}(\mathrm{N} \log \mathrm{N})$ integral equation solvers
- EM-SPICE coupling
- EM and SPICE co-simulation and coupled solution
- Parallelization
- Fast parallelized tree algorithms for multicore / cluster configurations
- Geometry and Mesh
- Application specific mesh optimization, macromodeling, and geometry processing
- Variability and statistical modeling
- Accelerated Monte-Carlo techniques for multiobjective and multi-parameter variability and optimization

Computational cost of the MoM

The curse of complexity

- An explicit inversion scheme for an MoM matrix has a cost of approximately $2 / 3 \mathrm{~N}^{3}$ (e.g. LU decomposition) and as can be seen becomes very expensive for large problems.
- A problem with a million unknowns would require more than 300 years to solve with LU decomposition!!
- If algorithms could be devised that scale as N or $\mathrm{N} \log$ N , even with very large constants (5000 or 10000), the time savings are dramatic. The same problem would require only a few minutes to solve!

Memory

- Storing the MoM matrix: Huge bottleneck!

Multilevel Tree-Based N-Body Methods

- Two analogies
- FFTs in space
- Trans-Atlantic landline topology

Multilevel QR Based Compression Scheme

n Sources

$$
{ }^{50}
$$

m Observers

$$
\nabla \nabla \nabla \nabla
$$

$$
\overline{\bar{Z}}_{\mathrm{N} \times \mathrm{N}}
$$

$$
\mathrm{Q}_{\mathrm{k}}=\left(\mathrm{A}_{\mathrm{k}}-\sum_{\mathrm{i}=1}^{\mathrm{k}-1} \mathrm{R}_{\mathrm{ik}} \mathrm{Q}_{\mathrm{i}}\right) / \mathrm{R}_{\mathrm{kk}}
$$

$$
\mathrm{R}_{\mathrm{ik}}=\mathrm{Q}_{\mathrm{i}}^{\mathrm{T}} \mathrm{~A}_{\mathrm{k}} \quad \begin{gathered}
\mathrm{k}=1 \ldots \mathrm{r} \\
\mathrm{r}<(\mathrm{m}, \mathrm{n})
\end{gathered}
$$

Memory and solve time per RHS reduced by

Parallelization

- Availability of Shared Memory Multicore CPUs growing
- Chip companies claim 100 cores in 5-7 years is a reality
- Low-cost clusters with distributed memory also growing
- Need true parallelized simulation methods
- Amdahl's Law: Your parallelization is limited by the percentage of serial code

Parallel Architectures

- Hybrid Memory
- Clusters of SMPs

Network / Bus

Multicore Paradigms- Here to Stay

- Frequency Scaling Slowing Down - Stopped!
- More Cores with Shared Memory
- Most users have multicore, clusters less common
- No Free Lunch for S/W : time to parallelize and parallelize correctly
- No memory overhead; Thread safety; Amdahl's Law!
- Significantly more challenging than distributed / MPI simulation
- Discussed in embedded tutorial in EPEP 07

Parallelization: Load Distribution-Near Field

M1	M2	M3	M4	M5	Mk-1	Mk
:			\%		\cdots	

Link list of neighbor lists

Near field interaction workload distribution
Nmom/Np: processor workload \longrightarrow Load Balancing

Load Distribution-Far Field

Link list of interaction lists

Far field interaction workload distribution

Predetermined Rank Map \longrightarrow Load Balancing

Fisuryynamic Load Balancing for Sparse Approximate Inverse

Hisura= Collective Call for Data Collection

MPI Reduce $\left\{\begin{array}{l}\text { Data Collection } \\ \text { Data Operation }\end{array}\right.$

Setup time vs no. of processors

Y-axis: (setup time for 1 processor/setup time of N processors)
Setup time scales linearly with the number of processors

Solve time vs no. of processors: Effect of Amdahl's Law

Scaling with Serial Bottlenecks Removed

- Speedup for matvec

- For larger problems, approaches closer to the ideal

Challenges for fast convergence

- Convergence is the bottleneck for a true $\mathrm{O}(\mathrm{N})$ solution in cases of
- Electrically small packages -low frequency simulation in a broadband application
- Nonuniform mesh density -realistic package layouts, vias
- Thin and long/wide metal -metal layers in a package
- Practically any realistic microelectronic simulation has these features
- Charge and Current in the EFIE leads to a low-frequency problem related to separation into curl-free and divergencefree solutions

Automatic loop detection

- Local loops around internal vertices
- Global loops around holes, handles and junctions

Hple

Handle

Junction

Automatic global loop detection

Loop around a handle

Three stage preconditioner: LoopTree, Basis rearrangement, ILU

The complete three stage preconditioner has converged to the correct LU solution The rest are far from the correct solution for the given residual of $1 e^{-5}$ In general: error in solution<=residual*condition number of the matrix

DDR Designs for Hard Disk Storage

Impedance on Package-Board

Geometry Challenges

- Mesh Refinement and

Geometry "Cleanup" need to be accomplished simultaneously

Package Modeling

Automatic Port Generation

Solder Ball Side

Speed and Memory Profile

Minutes per frequency solve: 30 seconds
Minutes for 40 freq points: 20 minutes
Memory:
750 MB
Processor: 8 core Intel Xeon @2.66GHz

4×4 Steerable Array Antenna with Phase Shifters

reference: "A 20 GHz Steerable Array Antenna Using 3-bit Dielectric Slab Phase Shifter on a Coplanar Waveguide" IEEE Transactions on Antennas and Propagation (2007)

S Parameters

- S11 (Measured)

- S11 (Simulated)

S11 measured data

PhysPack Results
Project '4x4_8_25_0thickness_radiation', Simulation 'Simulation1'

Radiation Pattern Plot

\square E Plane (Measured)
\square E Plane (PhysPack)

What is Next?

- Moving from Verification and Modeling to Design
- Rapid Design Iteration
- What-If Simulation
- Modeling Manufacturing Variability
- Seamless Integration
- Coupling to Layout-Level and Schematic-Level Simulators
- Generation of Broadband Time-Domain Models
- Back-Annotation to Layout Tools

Variability Modeling

Manufacturing Variability
Fast Parametrics and Optimization
Statistical and Yield Models
Integration with SPICE
Approach: Adaptive Response Surfaces

ACE

PDF generation

PDF of Q at 10 GHz

PDF of R at 10 GHz

Influence of conductivity and trace width variances on the PDF of Q of the inductor at 10 GHz

Yield Modeling

Distribution of Optimal inductors (L within 5\% of mean and Q>9

PDF of CMRR/Differential S_{11}

CMRR : Note the mean of the CMRR shifts to a lower value as process variations increase

Differential Return loss

Sample yield diagram for differential LNA

- Criterion : Differential S11 <=-15 dB and Diff Gain >=16 dB

Yield table

Circuit Performance	Type 1 Variation	Type 2 Variation
Diff Gain $>16 \mathrm{~dB}$	99.7%	90.1%
$\mathrm{DS}_{11}<-15 \mathrm{~dB}$	99.9%	95.2%
Overall	99.6%	85.4%

Yield diagram for the type 2 variation for the differential LNA

Yellow: All LNAs
Black: Good LNAs

Optimization and Design Space $A C=$ Exploration

Package Optimization: UWEE ACE Lab/Physware/Intel

Summary

- Rapid Advances in Integral Equation-Based Simulation for Packaged Microelectronics
- Goes beyond state of the art finite element and finite difference based competing approaches
- Enables Verification and Modeling at Unprecedented Scale and Speed
- Significant Challenges Remain!
- Technological: Design, Synthesis, Variability, Integration, Multiphysics
- EDA Community: Preponderance of protected / proprietary and even incompatible formats impedes integration
- "Compete on core engines and technology, not on file formatş?"

