Trends and Requirements for System-Level Design of Signal and Power Delivery

EPEPS 2009
Future Directions in IC and Package Design Workshop
October 18, 2009
Portland, OR
Brad Brim, Sigrity
bradb@sigrity.com
Agenda

1. Whole-package/board SI and PI
2. System-level analysis for SI and PI
3. High-speed serial channel design
High speed interfaces exacerbate design challenges

- Increasing need for chip-package-board system analysis
- Similar challenges for SSO / SSN issues for even mainstream designs
- Power and ground behavior is paramount
- Similar challenges for SerDes, PCI-X, …

DDR Interface Trends

- **Speed**
 - 400 - 800 MBS
 - 800 - 1600 MBS
 - ?

- **Core Voltage**
 - 2.5v
 - 1.8v
 - 1.5v
 - ?

- **IO Voltage**
 - 1.8v
 - 1.5v
 - ?

DDR4 Pending Conclusion by JEDEC
PDS trends affecting modern designs
1 - Whole-package/board SI and PI
Whole package/board analysis

- **To support system-level design the entire package/board must be characterized**
 - or at least a large enough portion of it to include all relevant SI and PI effects

- **Circuit Simulation**
 - SPICE has long been the standard
 - RF expatriates more familiar with frequency domain
 - frequency domain more amenable to model generation
 - very fast but accuracy bounded analysis
 - ideal PDN implicitly assumed, global node 0
 - designer must manually include couplings, some tools parse layout to automate

- **EM Simulation**
 - many techniques
 - integral/differential equations, time/frequency domain, planar/3D
 - high accuracy but capacity bounded analysis
 - too much computer time and memory
 - can simulate portions of real boards or small/isolated channels
Analysis technologies

application ranges

Technology

Circuit Simulation
- circuits, systems

3D EM Simulation
- components, small circuits

Hybrid EM-Circuit Solvers
- boards, packages, systems

Application

SI

EMC

PI
Hybrid solver technology challenges

- Maintain enough speed to enable whole-package/board analysis for modern designs (maximum *hours*, not *days*)
 - packages of 10(+) layers, 5000 or more pins
 - board with 20(+) layers, 10(+) ASICs/FPGAs
- Support enough “full-wave behavior” to enable accurate analysis
 - coupling and referencing within the design
 - loading exterior to the design
- Provide both frequency and time domain analysis capability
 - frequency domain provides models for subsequent system analysis
 - time domain allows IBIS drivers and arbitrary signaling conditions
- Interact effectively with circuit-only and EM-only analyses
Three classes of solvers working together

Circuit Analysis

Component models

EM Plane Solver

T-Line, Via, Wirebond EM Solvers

EM Analysis

Circuit Solver

SPICE
Modified Nodal Analysis

\[
\begin{pmatrix}
Y & C \\
CT & Z
\end{pmatrix}
\begin{pmatrix}
v \\
i
\end{pmatrix}
=
\begin{pmatrix}
\text{i}_s \\
\text{v}_s
\end{pmatrix}
\]

Hybrid Solver Technology
Combined Ckt/EM Nodal Analysis

\[
\begin{pmatrix}
Y_{\text{ckt}} & Y_{\text{ckt-EM}} \\
Y_{\text{EM-ckt}} & Y_{\text{EM}}
\end{pmatrix}
\begin{pmatrix}
\text{v}_{\text{ckt}} \\
\text{v}_{\text{EM}}
\end{pmatrix}
=
\begin{pmatrix}
\text{i}_{\text{ckt}} \\
\text{i}_{\text{EM}}
\end{pmatrix}
\]
Hybrid solver algorithms

1. **Parse layout**
 - components: nets, pads, vias, wirebonds, etc
 - planes
 - interactions of components and planes
 - vias through multiple planes, nets crossing voids/splits, via-to-via coupling

2. **Setup circuit portion**
 - create a virtual netlist
 - determine couplings, loadings, etc
 - create required component models

3. **Setup EM portion**
 - determine multi-layer topologies
 - discretize (mesh)

4. **Setup circuit-EM interactions**
 - implement connectivity
 - analytical and numerical interactions

5. **Simulation**
 - time or frequency domain composite analysis

6. **Save, postprocess and display results**
 - terminal characteristics (S/Y/Z-parameters)
 - node and plane voltages, branch currents
 - compute emissions (*from branch currents and plane-edge voltages*)
Two high speed diff pairs in a package
Schematic-level Circuit Modeling with Component Models

A concatenation of individual components? (circuit analysis)

One big component? (EM analysis)

A part of a bigger signal and power delivery system? (hybrid analysis)
Power integrity **and** signal integrity!

| solid lines | Circuit Analysis **and** 3D EM (channels and locally-
| Analysis | shorted planes, loss, slight impedance mismatch) |
| dashed lines | SI/PI Full-package Analysis (channel and full planes, includes power plane resonances) |

WARNING:

A false sense of security is established if only circuit simulation is applied. If 3D EM simulation is later applied as a “verification”, this sense of security can falsely be reinforced if the full power planes are not included properly in the simulation.
Simultaneous switching noise (SSN)

- Both SI and PI must be considered ... simultaneously.
- SSN is dominated by return path issues.
- SSN is grossly underestimated with SI-only analysis tools.

non-ideal PDN
- significant SSN effects

ideal PDN
- minimal SSN predicted
Perform PDS pre-route and post-layout design tradeoffs amongst: *performance-cost-area*

![Diagram showing on-board and in-package decaps with impedance graphs for U1, U2, U3, VRM, Red, Original, Blue, and Optimized. Target impedance is 5mΩ.](image-url)
Predict and address EMC issues early in the product development cycle.
Package performance **assessment vs. extraction**

- **Performance assessment**
 - dictionary definition of “assessment”
 - a judgment about something based on an understanding of the situation
 - the objective
 - an indication of quality or viability of the package design
 - numerical value and qualitative judgment are equally important
 - higher level information to support decisions, shared with non-experts
 - usually performed earlier in the package design flow
 - a more iterative process

- **Model extraction**
 - dictionary definition of “extraction”
 - to obtain something from a source, usually by separating it out from other material
 - the objective
 - an electrical model to support subsequent analysis
 - numerical value and accuracy are important
 - lower level detail, shared with simulation experts
 - usually performed later in the package design flow
 - a non-iterative step, often a verification type step
Support of IC designers

To support IC power delivery network design
- IC design teams often ask for an inductance report or specify constraints for package inductance
 - inductance is for each die pin looking into the package
 - all power and ground pins are of concern
 - no return current path is specified

- This request is for “partial inductance”
 - cannot be measured for a package
 - DC EM analysis can compute
 - not defined for AC, full-wave EM analysis cannot compute
 - cannot be applied in isolation (currents flows in loops – no “partial current”)
Per-pin pwr/gnd assessment
looking into package from die-side

- 2D plots of R and L help to quickly identify “weak” pins looking into the package
 - in this case, looking into the package from the die
- R and L distributions are similar but not identical
Per-pin pwr/gnd assessment

2-to-1 pin inductance variation identified in high speed I/O power net
Per-pin pwr/gnd assessment

another example, board-side core power

- Board-side loop inductances for core power delivery pins
 - one weak pin is immediately identified with nearly 2X the inductance of other pins
Per-Pin Resistance and Inductance Assessment

- 2D and 3D geometry views help to quickly identify design fixes
 - the ‘weak’ pin is on the plane edge and has a high impedance series interconnect
 - this power pin is more isolated from core vias than other power pins
Hybrid solver trends

- Faster and more memory efficient
 - multi-core and high performance computing support
 - algorithm improvements for both time and frequency domains

- Application to “pre-layout” analysis
 - don’t just tell me how my decap design works, tell me where to put the decaps

- Statistical behaviors
 - variations in manufacturing (spacing, width, thickness, etc)
 - component tolerances and multi-vendor sourcing

- Greater ability to handle local 3D geometries
 - more general built-in component solvers
 - coupling of plane solvers to built-in 3D solvers
 - will enhance high frequency accuracy of whole-package/board analysis

- Leadframe package design flow support and extraction
 - QFP, QFN, Amkor’s “Fusion Quad”

- Tighter integration with chip-level analysis tools
 - static and dynamic power noise and timing analyses

- Expanding support for package “design” tasks and decisions
 - assessment analyses and display
 - more compact yet complete models

- Greater incorporation of emissions on design-side simulation
 - tell me where I need decaps to reduce emissions
2 - System-level analysis for SI and PI
System-level analysis issues

- Model size
- Domain partitioning
- Model connectivity
Model Size

- Broadband, many-port Touchstone data files are large
 - can be several gigabytes for whole-package/board

- Sigrity could not wait for an industry standard to support system-level design
 - created a proprietary format “BNP” (broadband network parameters)
 - provide free viewer and API to read (e.g. in HSPICE)
 - incorporates
 - binary storage, reduced order model (e.g. pole/zero), symmetry, etc

- IBIS committee working on standards for similar capabilities
 - Touchstone 2.0 spec now available
 - near-term enhancements
 - sparsity, port naming
 - longer term enhancements
 - binary, pole/zero
Multi-domain analysis
(package/board as an example)

1. Characterize individually, combine with SPICE
 - circuit-level connectivity
 - please don’t use language of “non-TEM” – it simply is not correct
 - includes “loading” but not “coupling”

2. Merge physical databases together
 - very large analysis, a high price to pay
 - composite stack-up
 - includes all possible coupling/loading effects

- When is a merged analysis required?
 - rarely
 - for potential “RF-type” couplings
 - for example: a high-gain power amplifier
 - -50dB to -60dB isolation required input-to-output
 - multi-layer proximity coupling may be important
The challenge with model connectivity

- Assume I have ...
 - a chip/package/board system with hundreds or thousands of physical connections (pins)
 - individual electrical models for each chip, package and board
 - I did not generate each of these models myself, therefore I do not have full knowledge of the pin mapping information for each model.

- How do I ...
 1. know which pins of one model to connect to the pins of another model?
 2. reliably and in reasonable time connect these models in a netlist or a schematic?
Requirements

- Chip/package/board systems have many physical connections (pins)
 - chip-package boundary \(\approx 100 – 5000 \)
 - package-board boundary \(\approx 100 – 2000 \)

- Not all electrical models can have pin-level resolution
 - models may be too large to compute, store, etc.
 - difficult to connect in EDA tools

- Adequate modeling may not be possible with net-level resolution
 - especially, if this low resolution is applied throughout the entire system
 - NOTE: “net-level resolution” groups all pins for each net at a domain boundary

- Support is required for
 - arbitrarily pin-grouped models
 - automated connection amongst models in EDA tools
System Analysis

Physical connectivity

Chip-centric model abstraction

Board-centric model abstraction
Existing Model Connection Protocols for Chip/Package/Board Analysis

- **Sigrity MCP** (Model Connection Protocol)
 - defined by Sigrity
 - publicly available definition
 - objective to support chip/package/board system analysis
 - presently Version 1.0
 - 1.1 available soon with user-requested pin locations

- **Apache CPP**
 - defined by Apache
 - definition covered under NDA

- Implemented as “headers”
- Contained within model-native comment lines
 - model could be either subcircuit or data file
A Typical Model Connection Protocol
(Sigrity MCP)

* [MCP Begin]
* [MCP Ver] 1.1
* [Structure Type] \{DIE|PKG|PCB\}
* [MCP Source] source text
* [Coordinate Unit] unit
* [Connection] connectionName partName numberPhysicalPins
 * [Connection Type] \{DIE|PKG|PCB\}
 * [Power Nets]
 * pinName modelName netName x y
 * ...
 * [Ground Nets]
 * pinName modelName netName x y
 * ...
 * [Signal Nets]
 * pinName modelName netName x y
 * ...
* [MCP End]
Application of an MCP model by an EDA tool

- a model definition
- an instance of the model
- define an MCP model link
- choose a file
- select the connection
A Physical Example

- a few nets in a small 4-layer flipchip BGA package
 (so the MCP sections fit on a single page)
 - 3 power nets
 - 1 ground net
 - 2 signal nets

![Die-side solder bumps](image1)

![Board-side solder balls](image2)
Model Resolution

- per-pin connectivity at the chip-package boundary
 - 36 physical pins - 36 electrical nodes
 - 18 power nodes - 5 VDD_1, 5 VDD_4, 8 VDDcore
 - 16 ground nodes - 16 VSS
 - 2 signal nodes - Net_1, Net_2

- per-net connectivity at the package-board boundary
 - 36 physical pins - 6 electrical nodes
 - 3 power nodes - 1 VDD_1, 1 VDD_4, 1 VDDcore
 - 1 ground nodes - 1 VSS
 - 2 signal nodes - Net_1, Net_2
A SPICE circuit with MCP header
(a mixed pin-level/net-level model)

.SUBCKT FlipChip_pkg_SPICE
+ U1_E3 U1_F1 U1_F2 U1_F3 U1_G3
+ U1_K6 U1_K7 U1_L6 U1_L7 U1_M6
+ U1_D4 U1_D9 U1_E4 U1_E9 U1_H4 U1_H9 U1_J4 U1_J9
+ U1_A1 U1_A12 U1_B11 U1_B2 U1_E5 U1_E8 U1_F7 U1_G6
+ U1_G7 U1_H5 U1_H8 U1_L11 U1_L2 U1_M1 U1_M12 U1_F6
+ U1_L1 U1_K1
+ BGA1_C1 BGA1_K6 BGA1_C10 BGA1_A1 BGA1_L2 BGA1_J3
*
* The following is the Sigrity MCP Section
**
*[MCP Begin]
*[MCP Ver] 1.0
*[Structure Type] PKG
*[MCP Source] Sigrity XtractIM 3.0.2.07061 7/18/2009
A SPICE circuit with MCP header
(a pin-level die-side connection)

* [Connection] U1 die_12x12 144
* [Connection Type] DIE
* [Power Nets]
 * E3 U1_E3 VDD_1
 * F1 U1_F1 VDD_1
 * F2 U1_F2 VDD_1
 * F3 U1_F3 VDD_1
 * G3 U1_G3 VDD_1
 * K6 U1_K6 VDD_4
 * K7 U1_K7 VDD_4
 * L6 U1_L6 VDD_4
 * L7 U1_L7 VDD_4
 * M6 U1_M6 VDD_4
 * D4 U1_D4 VDDcore
 * D9 U1_D9 VDDcore
 * E4 U1_E4 VDDcore
 * E9 U1_E9 VDDcore
 * H4 U1_H4 VDDcore
 * H9 U1_H9 VDDcore
 * J4 U1_J4 VDDcore
 * J9 U1_J9 VDDcore

individual electrical nodes
A SPICE circuit with MCP header
(a pin-level die-side connection)

* [Ground Nets]
 * A1 U1_A1 VSS
 * A12 U1_A12 VSS
 * B11 U1_B11 VSS
 * B2 U1_B2 VSS
 * E5 U1_E5 VSS
 * E8 U1_E8 VSS
 * F7 U1_F7 VSS
 * G6 U1_G6 VSS
 * G7 U1_G7 VSS
 * H5 U1_H5 VSS
 * H8 U1_H8 VSS
 * L11 U1_L11 VSS
 * L2 U1_L2 VSS
 * M1 U1_M1 VSS
 * M12 U1_M12 VSS
 * F6 U1_F6 VSS

* [Signal Nets]
 * L1 U1_L1 Net_1
 * K1 U1_K1 Net_2
A SPICE circuit with MCP header
(a net-base pcb-side connection)

* [Connection] BGA1 board_12x12 144
* [Connection Type] PCB
* [Power Nets]
 * C1 BGA1_C1 VDD_1
 * F3 BGA1_C1 VDD_1
 * G1 BGA1_C1 VDD_1
 * G3 BGA1_C1 VDD_1
 * K1 BGA1_C1 VDD_1
 * K6 BGA1_K6 VDD_4
 * K7 BGA1_K6 VDD_4
 * M10 BGA1_K6 VDD_4
 * M3 BGA1_K6 VDD_4
 * M7 BGA1_K6 VDD_4
 * C10 BGA1_C10 VDDcore
 * C3 BGA1_C10 VDDcore
 * D4 BGA1_C10 VDDcore
 * D9 BGA1_C10 VDDcore
 * J4 BGA1_C10 VDDcore
 * J9 BGA1_C10 VDDcore
 * K10 BGA1_C10 VDDcore
 * K3 BGA1_C10 VDDcore
A SPICE circuit with MCP header
(a net-level pcb-side connection)

* [Ground Nets]
 * A1 BGA1_A1 VSS
 * A12 BGA1_A1 VSS
 * A5 BGA1_A1 VSS
 * A8 BGA1_A1 VSS
 * E1 BGA1_A1 VSS
 * E12 BGA1_A1 VSS
 * F6 BGA1_A1 VSS
 * F7 BGA1_A1 VSS
 * G6 BGA1_A1 VSS
 * G7 BGA1_A1 VSS
 * H1 BGA1_A1 VSS
 * H12 BGA1_A1 VSS
 * M1 BGA1_A1 VSS
 * M12 BGA1_A1 VSS
 * M5 BGA1_A1 VSS
 * M8 BGA1_A1 VSS
* [Signal Nets]
 * L2 BGA1_L2 Net_1
 * J3 BGA1_J3 Net_2
* [MCP End]
A SPICE circuit with MCP header

```
* [MCP End]
*
R1   U1_E3  rN1  0.0174356
L1   Vn1   CGN_1  1.40606e-009
R2   U1_F1  rN2  0.0396763
L2   Vn2   CGN_1  1.9193e-009
R3   U1_F2  rN3  0.0179045
L3   Vn3   CGN_1  1.38604e-009
R4   U1_F3  rN4  0.0169535
L4   Vn4   CGN_1  1.36788e-009
R5   U1_G3  rN5  0.0168749
L5   Vn5   CGN_1  1.38677e-009
R6   BGA1_C1 rN6  0.00297266
L6   Vn6   CGN_1  2.5225e-010
R7   U1_K6  rN7  0.0162756
L7   Vn7   CGN_2  1.32381e-009
R8   U1_K7  rN8  0.0168774
L8   Vn8   CGN_2  1.3217e-009
R9   U1_L6  rN9  0.0164076
L9   Vn9   CGN_2  1.33716e-009
```
3 - High-speed serial channel design
Challenges for Serial Link Design

- Bit Error Rate (BER), Inter-symbol Interference (ISI), Jitter
- Crosstalk, Reflections, Loss, Dispersion

Increasing bit rate

- backplane 37%
- packages 37%
- connectors 13%
- daughter cards 18%
- Tx/Rx cap 4%
IBIS AMI concept
(Algorithmic Modeling Interface)

- The Tx –to– Rx pathway is composed of 3 separate entities
 - Tx algorithmic part
 - Analog channel
 - Rx algorithmic part

 ![Diagram showing three separate entities connected by data flow](image)

 Three “decoupled” parts can be independently solved in time domain

- Executable model delivered as a dynamically linked library (DLL)
 - Data flow between these three parts is addressed by a standardized API
 - Robust and flexible parameter passing to Tx & Rx
IBIS AMI
What it *does* and *does not* do

- **Does**
 - How and what data is interchanged between EDA tool and IC AMI model
 - Pass the user settable parameters to the AMI model

- **Does not**
 - Prescribe how the device must be modeled
 - State and limit the parameters which can be passed
 - Specify how the EDA tool should perform the simulation
 - simulator agnostic
 - Stipulate how eye diagram, Bit Error Rates must be computed
Channel design requirements

- **Analysis Capability**
 - Flexible design space exploration:
 - AMI models, Jitter/Noise parameters, System components
 - Techniques for crosstalk and jitter modeling
 - Transient simulation of S-parameters for channel characterization
 - User definable data coding
 - Account for real power supply effects

- **Workflow**
 - Block wise schematic editor
 - automated model connectivity
 - Access, extraction and viewing of single-ended and mixed-mode S-parameters for the whole channel or any part of it
 - layout-based package and board models
 - AMI and design templates
Investigate design alternatives

- Quick what-if type analysis by changing
 - Jitter/Noise settings
 - Equalization parameters
 - Various channel component models: connectors, cables, packages, boards, …etc
 - Subcircuit parameters such as die cap, R_{term}, and Tx drive level

```amifff
(fwd 2)
(offset 0)
(pre 1)
```

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
<th>Circuit File</th>
<th>Line</th>
</tr>
</thead>
<tbody>
<tr>
<td>rmoe_imp</td>
<td>25</td>
<td>C:\Sigtry_Fil...</td>
<td>1</td>
</tr>
<tr>
<td>tc_rt</td>
<td>50</td>
<td>C:\Sigtry_Fil...</td>
<td>1</td>
</tr>
<tr>
<td>tc_c_comp</td>
<td>1p</td>
<td>C:\Sigtry_Fil...</td>
<td>1</td>
</tr>
<tr>
<td>tc_scale</td>
<td>1</td>
<td>C:\Sigtry_Fil...</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Property</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of Bits</td>
<td>100000</td>
</tr>
<tr>
<td>Bit Sampling Rate</td>
<td>32</td>
</tr>
<tr>
<td>Random Jitter (RJ) (%)</td>
<td>0.88</td>
</tr>
<tr>
<td>Deterministic Jitter (Dj) (%)</td>
<td>0</td>
</tr>
<tr>
<td>Random Noise (Rn) (mV)</td>
<td>1</td>
</tr>
<tr>
<td>Deterministic Noise (Dn) (mV)</td>
<td>0</td>
</tr>
<tr>
<td>Data Rate (Gbps)</td>
<td>10</td>
</tr>
<tr>
<td>Delay (ns)</td>
<td>0</td>
</tr>
<tr>
<td>Periodic Jitter Frequency (Hz)</td>
<td>1.0238e+008</td>
</tr>
<tr>
<td>Periodic Jitter Amplitude (UI)</td>
<td>0.043</td>
</tr>
<tr>
<td>Periodic Noise Frequency (Hz)</td>
<td>60</td>
</tr>
<tr>
<td>Periodic Noise Amplitude (mV)</td>
<td>5</td>
</tr>
<tr>
<td>Transition Jitter (%)</td>
<td>0</td>
</tr>
<tr>
<td>Transition Noise (mV)</td>
<td>0.1</td>
</tr>
<tr>
<td>EDC (%)</td>
<td>0.67</td>
</tr>
</tbody>
</table>
Isolated or coupled channels

* Time Domain simulation of crosstalk
* Crosstalk Tx model can be different
* Crosstalk Tx can have different data rates and pattern
* Even, odd, random and statistical crosstalk modes
Comprehensive jitter/noise inputs

- Random jitter/noise
- Transition jitter/noise
- Periodic jitter/noise
- Frequency offset
- Duty Cycle Distortion (DCD)

Jitter/Noise at Rx (post processing) and at Tx input (time domain simulation)
A serial link layout
Setup of ideal/real PDN

Ideal PDN

5Gbps
100,000 bits
Random pattern

Real PDN

51
An FFE AMI template

- Feed Forward Filter can be deployed at Tx or Rx
- Can be cascaded with stand alone CDR
- Unlimited number of taps and pre taps
- The set of weighting factors \(w_i \) are called tap coefficients
- The tap coefficients are automatically optimized.
- The optimization maximizes signal to interference ratio (SIR)
A DFE AMI template

- DFE stands for Decision Feedback Equalizer
- Removes ISI by adding corrections to the input based on previous decisions
- Unlimited number of taps
- The tap coefficients are optimized dynamically (blind adaptation)
- DFE has an integrated CDR
- This DFE can be cascaded with FFE for precursor ISI cancellation

\[y_n = x_n + \sum w_i^* d_i \]

- \(y_n \) - output
- \(x_n \) - input
- \(d_i \) - previous \(i_{th} \) decision
- \(w_i \) - \(i_{th} \) tap weight
A look-ahead equalizer AMI template
A typical environment for channel design

Sigrity Channel Designer - “SCD”
C8 with FFE AMI Model

- **ffe[c8.ffe]**
 - C8.ffe list explicit 4 tap coefficients
- **lffe[f4l_m.ffe]**
 - F4l_m.ffe lists explicit limits for the 4 tap ffe
- **HSSCDR was run with this setting**
- **SCD was run with IBM supplied Tx AMI model with ffe and lffe parameters**
Multi-tool waveform comparison
(Using same impulse response for both tools)

Same impulse response for HSSCDR and SCD produce the same results
C10 with FFE AMI Model

- Automatic 4 tap optimization
- lffe[f4l_m.ffe]
 - F4l_m.ffe lists explicit limits for the 4 tap ffe
- HSSCDR was run with this setting
- SCD was run with IBM supplied Tx AMI model with ffe and Iffe parameters
Extremely similar multi-tool simulation results

Red - SCD (w/ HSPICE)
Blue - HSSCDR

Yes “EDA tool agnostic” but ...
Slight differences of circuit simulation for impulse response can result in slight differences for higher-level channel behavior.
Thank You!