Topics

- EM research and implementation in SI tools
- Industry trend in serial link designs
- EDA tools need to be enhanced in
 - supporting future design challenges
 - creating a user-friendly environment for majority SI engineers and designers in solving complex EM problems
 - making seamless integration across all design and simulation domains
EM research and implementation in Signal Integrity tools

- Electromagnetic field theory and numerical method in PCB interconnect analysis
 - From the beginning of Signal Integrity tools
 - Example:
 - Greenfield 2D from Quantic in late 80s
 - Interconnect modeling tool for traces on board
 - All SI tools today include 2D field solvers for trace modeling
 - Improvements on field solvers almost in every release of all SI tools
Advanced modeling methods are introduced to SI tools as high speed simulation mythologies evolve. SI tools have introduced 2.5D or 3D field solvers to analyze complex structures on signal path and power delivery path. Question: is this enough for high-seed designer?
Understanding the world of high-speed digital designs

- Digital designers observe / describe signal or power behavior in time domain
- Design goal is defined and measured in time domain
 - Signal quality, Power stability, and Timing budget
EM work to serve hardware designers

- Understanding the world of high-speed digital designs (cont’)
 - Signals are studied from Die to Die
 - Power delivery is designed from voltage source to IC components
 - EM phenomenon is “buried” in signal waveforms and voltage ripples

[Image: Courtesy image from IEEE EMC 2005 Symp. Panel]
EM work to serve hardware designers

Simulation requirements for SI tools

- Signal models + interconnect models
- Power source / sink models + delivery path models
- EM modeling is only part of the solution
- Advanced device models are critical to the success of entire signal path or power delivery path simulation
In 2008, most of I/O interface works at the rates of 5 to 6Gbps

- PCI Express Gen2 at 5Gbps for computer I/O buses
- Optical Internetworking Forum (OIF) at 6Gbps for network communication
- Serial Advanced Technology Attachment (SATA) III/SAS II at 6Gbps for storage area networks

Next-generation standards will support data rates from 8 to 11Gbps

- IEEE 10G Ethernet
- PCIe Gen3 (8.0 Gbps) for computer I/O buses
What is happening in high speed design world today?

[Diagram showing signaling rate (Gbps) from 2000 to 2010 with key events such as SATA, PCI Express Gen2, Gen3, OIF, and GbE indicated.]
In general, 40% of the signal nets on board carry signals with data rates at multiple Gbps. 2.5 / 3.125Gbps signals have become part of the main stream designs. This is where advanced analysis capability applies.
Traditionally, for advanced designs
- Multiple tools are used
 - Results from these tools are pieced together
 - The behavior of individual structures on signal or power path are carefully studied

What is missing today
- The versification capability when large amount of SERDES signals present on board
- The capability to apply EM solvers intelligently in post-route environment
Existing multi-Gbps design flow

Design depends on the usage of various tools and combining simulation results

Design success heavily depends on pre-layout analysis

Very little is done in verification at board level

Effective when

the number of SERDES signal nets is at minimum

new interface

Perform pre-layout analysis with multiple tools

Establish constraints

Implement constraints in layout / routing

Perform rule checking

Build prototype
Design flows of multi Gbps signals

- Desired multi-Gbps design flow
- Unified design and analysis environment
- Efficient verification at the post-route stage

1. Establish constraints
2. Perform pre-layout analysis with multiple tools
3. Implement constraints in layout / routing
4. Perform rule checking
5. Perform verification on board
6. Perform topology and geometry extraction
7. Modify constraints
8. Eye-diagrams & channel xtalk
9. Build prototype
10. Save typical channel characteristics and geometries in library for design re-use
Challenges to SI tools

- With half of the nets on board carrying signals at the rates in Gbps range
 - SERDES channels lost “privilege”

- Requirements for SERDES analysis
 - Tightly integrated layout and analysis capabilities
 - Effective topology and geometry extraction
 - Robust and flexible simulation environment to simulate models from different sources
 - Efficient post-route batch mode channel analysis
 - Good model library management for design re-use
Challenges to SI tools

- Tightly integrated layout and analysis capabilities
- Easy to implement and modify constraints
Challenges to SI tools

- Effective topology and geometry extraction
 - Easy to examine problematic channels
 - Easy to identify / select geometries to be modeled using advanced EM solutions
Challenges to SI tools

- Robust and flexible simulation environment to simulate models from different sources
 - Easy to simulate device models in different formats/standards (HSpice, classic IBIS, or IBIS-AMI)
 - Efficient and accurate S-parameter simulation in time domain
Challenges to SI tools

- Efficient post-route batch mode channel analysis
- With channel coupling effects included
Challenges to SI tools

- How to make tool easy to learn and re-learn
 - Wizard driven simulation flow
- How to complex-algorithm/theory based function easy for designers who have little time to study a tool in detail
Preparing for the challenges

- History of SI tools development shows
 - Circuit simulator providers keep adding in field solutions
 - Field solver providers expand solution base to include advanced device modeling
 - Reason is obvious: EM modeling and circuit device simulation are not separable

- Detailed discussions (what we have done)
 - Worst bit sequence pattern prediction
 - Robust and efficient S-parameter simulation
 - Power and signal co-simulation
Worst bit sequence pattern prediction

- Channel analysis function has been integrated in SI tools since 2004
 - Using channel’s Impulse Response to characterize a channel
 - Avoiding long (or impossible) Spice-like simulation to obtain reliable eye counters
- Why need to predict worst bit sequence?
 - Channel simulation can still take long time when billions of bits are simulated
 - It may not catch the worst case that certain bit pattern can cause
Can it be done?

Yes, by the worst case searching algorithm.

1,000,000 PRBS. Eye remains open.

10,000 PRBS with 100-bit worst sequence. Eye closed.
Predict Worst Bit Pattern

- Procedure overview
 - Impulse Responses generation
 - Channel simulation in time domain with certain number of bits
 - Statistical analysis
 - Combining results from channel simulation and statistical analysis to obtain worst bit pattern
 - Verifying the pattern with channel simulation
Predict Worst Bit Pattern

- Example: worst sequence solution is verified by time domain simulation
- Hours or days of channel simulation is not needed
S-parameter simulation in time domain is important in multi-Gbps signal analysis.

There are many methods available to perform the simulation:
- Direct convolution
- Equivalent subcircuit

A new method based on complex pole fitting (CPF):
- S-parameters are represented in a very compact pole-residue form.
Robust and efficient S-parameter simulation

How does it work?

- Touchstone S-parameter model file
- Complex-pole fitter
- Time-domain solver for poles
- Simulation results
- Complex pole-residue file ("pls")
Robust and efficient S-parameter simulation

➡️ Pole-residue file is re-usable

- Touchstone S-parameter model file
- Complex pole fitter
- Time-domain solver for poles
- Simulation results

Complex pole-residue file ("pls")

If pole-residue file already exists, don’t run fitting again; use existing poles, which simulate very fast
Robust and efficient S-parameter simulation

Performance of the convolution, CPF, and equivalent circuit

- 158-port, fully populated S-matrix
- Size of TouchStone file: 214MB

<table>
<thead>
<tr>
<th>Simulator</th>
<th>Convolution-based</th>
<th>CPF</th>
<th>Equivalent circuit</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Fitting</td>
<td>Creating equivalent</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(one-time</td>
<td>circuit (one-time</td>
</tr>
<tr>
<td></td>
<td></td>
<td>penalty)</td>
<td>penalty)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Transient</td>
<td></td>
</tr>
<tr>
<td>ELDO</td>
<td>failed</td>
<td>20.1</td>
<td>20.3</td>
</tr>
<tr>
<td>Base simulator</td>
<td>failed</td>
<td>N/a</td>
<td>N/a</td>
</tr>
</tbody>
</table>
Robust and efficient S-parameter simulation

- Published example (DesignCon2006)
- Single bank of FPGA, 2S130F1508, Altera Corp.
Robust and efficient S-parameter simulation

- Example of large 226-port model
 - Data extraction
 - Logarithmic scale from 1e2 to 1e8Hz then linear up to 4GHz,
 - 425 points total, file size is about 800MB
 - Symmetric fully populated matrix with 226x226=51,076 elements, complex-value functions of frequency
 - Fitting
 - Reading the touchstone - 12 min
 - Fitting & passivity enforcement - 4.1 and 14 min respectively
 - Resulted: 44MB pls file and 54MB sub-circuit
Robust and efficient S-parameter simulation

- Transient analysis of a test circuit
 - Only CPF and equivalent circuit can solve the problem
 - Excellent agreement between solutions by CPF and equivalent circuit in ELDO and equivalent circuit in “Base” simulation

<table>
<thead>
<tr>
<th></th>
<th>ELDO CPF (with PLS file)</th>
<th>ELDO, equivalent circuit</th>
<th>BASESIM, equivalent circuit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Read/parse/err check</td>
<td>14 sec</td>
<td>38 min 05 sec</td>
<td>11 h 48 min</td>
</tr>
<tr>
<td>DC solve</td>
<td>6.8 sec</td>
<td>3 min 55 sec</td>
<td>4 sec</td>
</tr>
<tr>
<td>Transient</td>
<td>7 min 22 sec</td>
<td>46 min 09 sec</td>
<td>20 min 11 sec</td>
</tr>
<tr>
<td>Total</td>
<td>7 min 43 sec</td>
<td>1 h 28 min 10 sec</td>
<td>12 h 08 min 36 sec</td>
</tr>
</tbody>
</table>
Power and signal co-simulation

- Power delivery design is important in multi-Gbps signal analysis
 - Low power components with low voltage ripple budget
- Decoupling approach and static IR-drop analysis are now available in many SI tools
- One need is to study the power noise effects on multi-Gbps signals
 - Using Power and signal co-simulation function
Power and signal co-simulation

- Designing power delivery network
 - Adequate DC voltage at IC power pins
 - PDN provides sufficient power to active devices
 - Stable voltage supplies while ICs are switching
 - Control voltage ripple
Power and signal co-simulation

- Plane and signal via interaction affects channel behavior
- An example of advanced models and EM solvers working together to solve multi-Gbps design problems
Power and signal co-simulation

- Extracted topology

No trace coupling between these two parts

Via coupling through planes
Power and signal co-simulation

Co-simulation in progress

Capture additional noise with co-simulation
Power and signal co-simulation

Via effects on eye-diagrams

Additional noises on an interested channel

Caused by interactions between other signal vias through planes

Red: no via-plane interaction
White: with via-plane interaction
EM modeling and circuit simulation are two key components of SI tools.

Industry trend in serial link designs present new challenges to SI tools.

SI tool providers need to be prepared in:
- supporting emerging technologies in high-speed designs
- making complicated solving capability simple (not simpler) for majority high-speed designers
- providing seamless integration environment across all design and simulation domains

Mentor is open to work with universities to meet new design challenges!
Preparing for Future System Design Challenges: Advanced Technologies and Integration

Zhen Mu Ph.D
Product Marketing Manager