Fast 3D EM Simulation for Digital System Design

Ji Zheng
Apache Design Solutions
Outline

- Digital system simulation requirement
- SiP, 3D IC and TSV
- 3D fullwave EM solution progress review
- Chip modeling (from RTL to GDS) for system level EM analysis
Scope and Challenge

- **What is System Level EM simulation?**
 - RTL to GDS
 - Chip, Package/SiP and PCB

- **Driven by**
 - Cost and margin
 - Risk mitigation and first time success

- **Challenges**
 - Accuracy and Capacity
 - Multi-domain physics
 - Next generation chip-package designs
IC Technology Impact on Package/PCB

\[Z_{\text{target}} = \frac{(V_{dd} \times 0.05)}{(I \times 50\%)} \]

<table>
<thead>
<tr>
<th>Year</th>
<th>Technology</th>
<th>Power (W)</th>
<th>Vdd (V)</th>
<th>Current (A)</th>
<th>Target Impedance (mΩ)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2004</td>
<td>90nm</td>
<td>84</td>
<td>1.2</td>
<td>70</td>
<td>1.7</td>
</tr>
<tr>
<td>2007</td>
<td>65nm</td>
<td>103</td>
<td>0.9</td>
<td>115</td>
<td>0.7</td>
</tr>
<tr>
<td>2010</td>
<td>45nm</td>
<td>119</td>
<td>0.6</td>
<td>198</td>
<td>0.3</td>
</tr>
</tbody>
</table>

System design margin is becoming Less and Less!
EM Accuracy Impact on Design Margin

- With holes
- No holes

Cut-package
Full-package

Inductance increased by 40%

Red – With holes
Green – No holes
Traditional SiP Configurations

- FC Side by side
- WB side by side
- Stacked WB
- Hybrid stack
- PoP stack
SiP Opportunities

<table>
<thead>
<tr>
<th>SoC</th>
<th>SiP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Single tech node</td>
<td>Multiple tech node</td>
</tr>
<tr>
<td>All IP’s ported to same technology node</td>
<td>Mix of IP’s in diff technology nodes</td>
</tr>
<tr>
<td>Horizontal partitioning</td>
<td>Horizontal & Vertical partitioning</td>
</tr>
</tbody>
</table>
SiP Design Flow: Reference Flow 10.0

- Basic Implementation
 - SiP Elec Design/Connectivity
 - SiP Package Physical Design

- Analysis
 - SiP Package Electrical Extraction
 - SiP Static Timing Analysis (STA)
 - SiP IR Drop
 - SiP Signal Integrity (SI) & Simultaneous Switching Noise (SSN)
 - SiP Thermal

- Verification
 - SiP Design Rule Check (DRC)
 - SiP Layout Versus Schematic (LVS)
3D Stacking with TSV
Die-to-die Connection

- **Cu-Cu bond or Bump**
 - Cu-Cu bond: Top-metal from each die touch directly to create connectivity
 - Bump: Top-metal from each die connected through bump as in standard bump process.

![Cu-Cu bond and Bump Diagram]

- Metal directly connects to metal
- Die 1
- Die 2
- Package substrate
- Metal connects to metal through bump
- Package substrate
Stacking Schemes

- **Face2Face or Face2Back**
 - **Face2Face**: Top-metal of two dice connected to each other and has package bump on backside.
 - **Face2Back**: Top-metal of first die connected to backside metal of second die and has package bump on front-side.
Silicon Interposer using TSV
- Alternative use of TSV

- TSV technology provides opportunities beyond 3D stacking
- TSV can be used to implement Si-Interposer that replaces package substrate in traditional SiP’s
- Advantages in lower parasitics and denser routing
3D IC Benefits

- **Form-factor**
 - Same as SoC without SoC complexity

- **Speed**
 - TSV RC in same order as chip metal
 - Die interconnect as opposed to off-chip interconnect

- **Power**
 - IO power reduced
3D IC Design and Analysis Challenges

- Die-package co-design is a must
- 3D electromagnetic simulation necessarily beyond package and PCB
System Level EM Simulation

- Complexity and size of the design requires large capacity and high efficiency

- Multiscale geometry usually leads to worse conditioning of the final matrix system

- Broadband solution requires the EM engine to work seamless from DC to multi-giga Hertz

- Whole system analysis requires the bi-directional link between EM model and circuit components
Progress on FEM

- Domain decomposition method
 - Various forms
 - Frequency domain and time domain
 - Parallelization

- Multi-grid method

- Layered finite element reduction recovery method
Progress on MoM

- Improve electric field integral equation (EFIE) for better conditioning over broadband
 - Calderon multiplicative preconditioner leverages the Calderon identity to obtain a well conditioned matrix
 - Augmented electric field integral equation (AEFIE) in a generalized saddle point form is a simple remedy for the low-frequency break down of EFIE
 - Current and charge integral equation (CCIE) constructs a sophisticated second kind integral equation to improve the conditioning
 - Equivalence principle algorithm (EPA) is an integral equation based domain decomposition method for multiscale structure
Progress on MoM

- Reduce dense matrix operation towards linear complexity
 - Multilevel fast multipole algorithm (MLFMA) factorizes the Green’s function based on the addition theorem
 - FFT based method utilizes the block Toeplitz structure of the impedance matrix of a regular grid
 - Fast QR method compresses the well-separated impedance matrix blocks
 - Adaptive cross approximation (ACA) is a rank-revealing LU decomposition without the need of computing all the matrix elements
 - H2 matrix creates block partitioning based on a cluster tree and approximates the integral operator kernel with polynomial interpolation
Define Next Generation Fast 3D Solver

- Full package and PCB capacity
- DC to 10’s GHz fullwave accuracy
- Native multi-core and multi-processor
- Robust co-simulation with circuits
- Handle multi-scale geometry
Co-Analysis

EM Source

- On-die device switching
- On-die substrate coupling
- IO simultaneous switching
- On-die core to IO coupling

EM Channel

- Package/PCB global power ground network
- Package/PCB power to signal coupling
- Signal return path discontinuity
- Radiation from traces, wires, vias and edges
Chip Power Model
Power Delivery Network Analysis & Optimization

CHIP DATA
- Layout (Early or Sign-off)
- Library

CHIP ANALYSIS
- Static
- Dynamic VCD
- Dynamic Smart VectorLess

Chip Power Model

Modes
- Static (I_{avg}, R)
- Frequency domain (RLC)
- Time-domain ($I(t)$, RLC)
Chip Power Model
Power Delivery Network Analysis & Optimization

CPM
- Supports both static and dynamic models
- Includes all die parasitics

Traditional Die Model
- Simplifying assumption of all gates switching at the same time

Power-grid RLC
Intrinsic De-cap
Intentional De-cap
Instance Load Capacitance
Well Capacitance

Estimated Cdie
Missing Rdie, Ldie
Chip IO Model – IO Behavioral Modeling
Signal Integrity Analysis & Optimization

Models Switching behavior & PG parasitics
Enables IP protection

Correlation of CIOM with full transistor model
RTL Modeling for System EM Analysis

RTL design and IP models

TCPower Theater

RTL VCD

Block Average Power or Current
Cycle-average power vs. time
Cycle-average activity vs. time

Power Grid + Floorplan
SoC Layout

Targeted vectorless DVD

On-die PDN and Pkg/PCB Signoff
SiP IR Drop Example

Die1 (Non-DUA)
- IC Design Data
 - Lef/def, .lib, etc
- CPM Generation

Package
- Pkg Design Data
 - sip, apd, etc
- RLCK Extraction

Die2 (DUA)
- IC Design Data
 - Lef/def, .lib, etc

RedHawk

Logic DVD without Package
DVD Peak = 115.2 mV
DVD Avg. = ~ 2 %

Logic DVD with Package
DVD Peak = 182.9 mV
DVD Avg. = ~ 2 - 3%

SRAM DVD with Package + ARM CPM
DVD Peak = 197.6 mV
DVD Avg. >= 8.3 %

The Proven Path to Success™