
SECRET SUPER COMPUTERS

Justin McKennon

Senior Electrical Engineer

NTS Lightning Technologies

HISTORY OF PROBLEM SOLVING

 When you think of all the great inventions, theorems,
equations and ideas throughout history, what do they
have in common?

 Each and every one of them was developed for the
same purpose: There existed a problem that did not
yet have a solution, or the “accepted” solution did not
sit well with someone (Einstein)

 As time has gone on, the complexity of these unsolved
problems has and will continue to increase

 We’ve picked most of the low hanging fruit already!

HISTORY OF PROBLEM SOLVING

 As the complexity of the problems has increased, it
became more and more difficult to develop solutions

 The invention of computers has drastically increased the
ability of people to solve problems

 Calculators, cell phones, video games

 Despite the increasing complexity of problems, computers
have allowed mathematicians, scientists, engineers,
businessmen etc… to make considerable strides and
innovations in every aspect of their respective areas that
would have required inordinate amounts of data
processing

HISTORY OF PROBLEM SOLVING

HISTORY OF PROBLEM SOLVING

 Computers have actually accelerated the complexity of

modern day problems and their solutions

 More powerful hardware means bigger problems (variables)

and more data

 But what happens when the complexity reaches levels

that even CPUs cannot efficiently solve the problems?

 To answer this, I will need to introduce you to

someone

COMPUTING PITFALLS

 This is Clip Art Jim. Throughout this talk he will

continue to come up to help me to explain some of the

ideas here

 Jim is analogous to a single core computer

 Jim has no trouble solving standard problems

COMPUTING PITFALLS

 Now, as the difficulty and complexity of the problems

increases, the time it takes for Jim to solve problems

significantly increases

 Jim is not as efficient of a problem solver when it

comes to tough problems

COMPUTING PITFALLS

 So what does Jim do to solve these more difficult

problems?

 Easy! Get smarter!

COMPUTING PITFALLS

 In the world of computers, the efficiency of a single

computer (CPU) with respect to calculations and

problem solving can be improved by increasing the

speed of its processor (clock speed)

 As the difficulty of the problems increases, CPU

manufacturers will have to crank of the processor

speeds to maintain problem solving and task

efficiency

COMPUTING PITFALLS

 Now, Jim is smarter. Whenever the progression of

problem complexity makes him an inefficient problem

solver, Jim simply makes himself smarter

 This cycle of Jim increasing his intelligence when he

becomes inefficient continues over and over again…

that is, until a critical point is reached

 What happens when Jim just can’t get any smarter

(think of his brain simply being full)?

COMPUTING PITFALLS

 In the computing industry, this is known as hitting a

frequency wall

 When this wall is reached, CPU clock speeds begin to

stall out

 This typically occurs around 3.5-4 GHz

COMPUTING PITFALLS

 Computer manufacturers typically add more transistors to

a CPU to increase its’ speed and performance

 As more and more transistors are added the law of

diminishing returns begins to take hold

 More transistors yield less and less of a performance gain

 Increasing the number of transistors also increases the

power consumption and heat dissipation of the CPU

 Since CPU sizes have largely remained the same in recent

years, the transistors inside of them have had to become

much smaller

COMPUTING PITFALLS

 Near the frequency wall, adding more transistors doesn’t
yield any worthwhile performance gain

 Additionally, increasing the number of transistors
increases power consumption and heat dissipation as well

 Too many transistors will make the CPU too hot and
consume to much power to be worth using

 You’ll need crazy expensive nitrogen cooling systems, or
something similar

 However, this performance bottleneck does not stop the
ever increasing difficulty/complexity of problems

 What to do?

COMPUTING PITFALLS

 Computer industry has solved this performance

bottleneck by moving to the modern, many-core

architecture

 By having more than one processor (core) in a

computer, the workload can be divided and the

performance will increase!

 Most of the computers in use today utilize this style

COMPUTING PITFALLS

 Jim is now part of a team

 His team is able to solve the problems that

handcuffed Jim by himself with relative ease!

COMPUTING PITFALLS

So that’s it, right?

COMPUTING PITFALLS

 Same cycle as before continues on

 Problems get tougher -> team gets smarter (speeds

increase) -> problems get tougher -> team cannot get

any smarter, so more team members are added to

restore efficiency

 There is a very finite limit to the amount of team

members that Jim can work with

COMPUTING PITFALLS

 Physical limitations now prevent the addition of more

cores

 Space – how BIG of a computer do you really want!?

 Power consumption and heat dissipation become

issues as well

 The computing industry is rapidly approaching this

COMPUTER PITFALLS

 Jim and his team are already as big and as smart as
they can get

 It takes hours… even days to get meaningful results

 Corners are forced to be cut due to performance
constraints and the accuracy of results plummets with
complex problems

 What now?

 This is the question currently staring at the computing
industry

 Can nothing be done?

THE SECRET SUPERCOMPUTER

 In the early 2000s, NVIDIA had one of the most

significant scientific breakthroughs in the past decade

 Enter the realm of the GPU!

GPUS

 Pause on our technological timeline for a moment

 If you’ve ever played any sort of graphics based computer

game: World of Warcraft, The Sims, sports games etc…

you’re already subconsciously aware of the power of GPUs

 In-game physics, explosions, landscapes, characters… all

of these are rendered by the GPU via hundreds and

hundreds of thousands of calculations every single second

 GPUs contain hundreds (sometimes thousands) of cores,

making them ideal for tasks such as these!

GPUS

 Lets head back to our buddy Jim

 NVIDIA made the connection between scientific

problems that need to be solved and the GPU

 In the world of Jim, this is analogous to Jim leaving his

crowded workspace, walking down the hall and

discovering an entire room full of hundreds of super

geniuses!

CUDA & GPUS

 With the introduction of the programming language
CUDA (short for Compute Unified Device Architecture),
NVIDIA pushed the envelope of performance to never
before seen heights

 By making use of CUDA, users can now harness the
massive computational capabilities of the GPU and
generate application specific code that can utilize the
GPU (in addition to the CPU) for exceedingly complex
problems

 For Jim, CUDA is a language that he can communicate
with these super-geniuses with!

CUDA & GPUS

 Unlike the CPU, the GPUs primary job is to perform

calculations

 The CPU has to worry about applications, the

operating system and many other processes

ALUs are the

primary

“calculators”

in on the CPU

and GPU

CUDA & GPUS

 Performance of GPUs and CPUs is often measured by

a term: GFLOPS

 Giga (10^9) Floating Point Operations Per Second

 How many calculations it can do per second

CUDA & GPUS

 Previous image clearly shows that the GPU has always
out performed the CPU from a purely computational
perspective

 In order to harness the massive power of the GPU it
must be programmed for your specific application

 Two main languages for this: CUDA and OpenCL

 OpenCL is much newer than CUDA and shows
significant promise as a possible long term
replacement for CUDA

 Both hardware and device independent

CUDA & GPUS

 Despite OpenCL’s promise, CUDA is still the most

popular GPU language out there and therefore will be

focused on here

 C programming language derivative

 If you can program well in C, you can easily learn to

use CUDA

 Many similarities to C, but several significant

differences between the two

CUDA PROGRAMMING MODEL

 GPU is considered to be a co-processor along side the
main CPU

 The CPU is referred to as the host while the GPU is
referred to as the device

 Both devices have their own memory

 Data needs to be copied between the two in order for
them to share information

 This copying of data is one of the biggest bottlenecks in
GPU computing as it is very computationally expensive

 In terms of our friend Jim, this means that the hallway he
walked down is extremely long

CUDA PROGRAMMING MODEL

 Nearly all CUDA programs have the same general flow

Define the kernel (function that is to run on the GPU) and the
arguments that are to be passed to it

Allocate space on the GPU for all the data required to
perform the computations you desire

Specify the block and grid sizes for the kernel

Copy the data from the host to the device

Execute the kernel

Copy the data from the device to the host

Free the allocated device memory

CUDA PROGRAMMING MODEL

 Defining kernels is syntactically very similar to

function declarations in standard C

 GPU kernels are distinguished from host functions by

the type specifier __global__

__global__ myFunction(int* arg A, int* argB,int N)

Kernels support both passing by value and passing by

reference, just as in C

CUDA PROGRAMMING MODEL

 Memory allocation is one of the most subtle and

intricate parts of GPU programming

 Performed by the function cudaMalloc() which takes in

two arguments: address of a pointer to the object you

wish to allocate and the size of the object you wish to

allocate

 In laymen terms:

cudaMalloc(whatImAllocating,howBig)

CUDA PROGRAMMING MODEL

 A thread is the single smallest unit of processing that

can be scheduled by an operating system

 Think of threads as little minions that you are there to

do your bidding

 More minions = better performance!

CUDA PROGRAMMING MODEL

 Each thread has its own unique ID (name)

 A thread block is a group of threads that work on shared

data stored on the GPU. Each block has its own unique ID

(name)

 Since there is a maximum number of threads that can

exist in a block, it is advantageous to aggregate the thread

blocks together to form a grid

 Threads within a single block can communicate with one

another seamlessly through shared memory. Threads in

different blocks cannot communicate via shared memory

CUDA PROGRAMMING MODEL

 Number of threads per block is usually around 512,

although this is usually tuned higher or lower (almost

always a multiple of 16) depending on the hardware

and application

 Size of the grid is typically limited by hardware, and

also needs to be tuned as well

 For good performance, grid size < 256

CUDA PROGRAMMING MODEL

 Copying data between host and device is very easy

 cudaMemcpy()

 Takes in four parameters: pointer to where you’re

copying it to, pointer to what you’re copying, how much

you’re copying, and what type of transfer (host to

device, device to host etc)

 Executing kernels is also straight forward:

myFunction<<gridsize,blocksize>>(arguments)

CUDA PROGRAMMING MODEL

 Enough of the gory details

 When the CPU is inefficient, it’s time to try the GPU

 Time for an example of what a GPU can do

 Apologize to any vegetarians in the room, but now it’s

time for the real meat and potatoes of this talk

NUMERICAL RELATIVITY

 Parts of the research work I’ve done is in an area of
physics called Numerical Relativity

 Area of gravitational physics focused on the modeling of
strong sources of gravitational waves

 These waves occur when massive objects (like really big –
stars, planets, etc.) are accelerated out in space

 These waves have been predicted by Einstein’s equations
of relativity but have never been directly observed due to
lack of technology (unavailable until now)

 The analysis of these waves allows for scientists to make
new kinds of astronomical observations

APPLICATION EXAMPLE

 Extreme Mass Ratio Inspiral (EMRI)

 Evolves GWs generated by a compact object in a
decaying orbit around a Super Massive Black Hole

 Evolution is modeled by the Teukolsky Equation

APPLICATION EXAMPLE

 Doesn’t look like a particularly simple equation to do
by hand

 Early work involved with solving for the source term,
the T in the above equation

APPLICATION EXAMPLE

 Put this equation into maple to obtain an expression

for the source term to use in our calculations

APPLICATION EXAMPLE

 It would take roughly 10-12 slides to include all of the

terms that make up the source term (over 4000)

 The complexity of this equation originally caused it to

take up the majority of the computation time

regarding this equation when run on the CPU

 In order to decrease the simulation time, we coded

the source term in CUDA and ran it on the GPU

SOURCE TERM RESULTS

 A Tesla C1060 GPU was used to speed up this

calculation. Looks like it did an okay job:

SOURCE TERM RESULTS

 The CPU we’re comparing performance with is no

slouch - an AMD phenom quad-core 2.5GHz processor

 A 50x speed up over the CPU is extremely high

COMPLETE SIMULATION

 Based on these results, a single Fermi card is comparable to

some x86 64 core CPUs!

 Significantly cheaper than a 64 core computer too!

GPU CHALLENGES

 Even with the significant performance gains obtained

from utilizing the GPU, many people still do not use

them

 Extracting any sort of near full-scale performance is no

walk in the park

 Hundreds of thousands of CPU programming experts

 Very few GPU experts comparatively

GPU CHALLENGES

 Makes debugging complex errors quite difficult

 Often, people will run a simulation on a GPU and see

no speed up and not understand why…

 Things like coalesced (sequential in memory) read

and write operations, divergent branches (pieces of

code that need to wait for other calculations to finish

before continuing), local loads and stores (you have

too much data for the GPU registers so it spills over

into global memory) among many other issues

GPU CHALLENGES

 Very delicate and complicated (you get used to it after
awhile) compared to standard CPU computing

 Explicit memory management

 Improper grid/block sizes

 Many, many ways to inhibit performance without
meaning to

 Some applications just aren’t meant for the GPU – not
parallelized, not complex enough (time it takes to
transfer data and perform calculation is more than
CPU takes to compute)

FUTURE OF GPUS

 AMD fusion architecture – CPU and GPU on the same chip

– eliminates the GPU transfer time (instead of having Jim

walk down a long hallway he simply walks across the hall)

 AMD’s technology, if successful will significantly increase

the value of GPU based work

 Many, many more applications will work efficiently on the

GPU

 OpenCL and CUDA will become more efficient and easier

to use

 Faster GPUs with more memory

MORE INFORMATION

 http://code.google.com/p/stanford-cs193g-sp2010/wiki/ClassSchedule

 http://drdobbs.com/

 http://forums.nvidia.com/index.php?act=ST&f=70&t=62620

 http://www.khronos.org/

https://code.google.com/p/stanford-cs193g-sp2010/wiki/ClassSchedule
https://code.google.com/p/stanford-cs193g-sp2010/wiki/ClassSchedule
https://code.google.com/p/stanford-cs193g-sp2010/wiki/ClassSchedule
https://code.google.com/p/stanford-cs193g-sp2010/wiki/ClassSchedule
https://code.google.com/p/stanford-cs193g-sp2010/wiki/ClassSchedule
https://drdobbs.com/
https://forums.nvidia.com/index.php?act=ST&f=70&t=62620
https://www.khronos.org/

REFERENCES

 http://thegadgetclub.net/wp-

content/uploads/2010/11/nvidia-Quadro-4000-Mac.jpg

 http://demo.rockettheme.com/mar08_j15/

 http://www.gameguru.in/pc/2006/24/en7950gx2-2-pht-1g-

dual-dual-graphics-card-launched-by-asus-india/

 http://www.khronos.org/

https://thegadgetclub.net/wp-content/uploads/2010/11/nvidia-Quadro-4000-Mac.jpg
https://thegadgetclub.net/wp-content/uploads/2010/11/nvidia-Quadro-4000-Mac.jpg
https://thegadgetclub.net/wp-content/uploads/2010/11/nvidia-Quadro-4000-Mac.jpg
https://thegadgetclub.net/wp-content/uploads/2010/11/nvidia-Quadro-4000-Mac.jpg
https://thegadgetclub.net/wp-content/uploads/2010/11/nvidia-Quadro-4000-Mac.jpg
https://thegadgetclub.net/wp-content/uploads/2010/11/nvidia-Quadro-4000-Mac.jpg
https://thegadgetclub.net/wp-content/uploads/2010/11/nvidia-Quadro-4000-Mac.jpg
https://thegadgetclub.net/wp-content/uploads/2010/11/nvidia-Quadro-4000-Mac.jpg
https://thegadgetclub.net/wp-content/uploads/2010/11/nvidia-Quadro-4000-Mac.jpg
https://demo.rockettheme.com/mar08_j15/
https://www.gameguru.in/pc/2006/24/en7950gx2-2-pht-1g-dual-dual-graphics-card-launched-by-asus-india/
https://www.gameguru.in/pc/2006/24/en7950gx2-2-pht-1g-dual-dual-graphics-card-launched-by-asus-india/
https://www.gameguru.in/pc/2006/24/en7950gx2-2-pht-1g-dual-dual-graphics-card-launched-by-asus-india/
https://www.gameguru.in/pc/2006/24/en7950gx2-2-pht-1g-dual-dual-graphics-card-launched-by-asus-india/
https://www.gameguru.in/pc/2006/24/en7950gx2-2-pht-1g-dual-dual-graphics-card-launched-by-asus-india/
https://www.gameguru.in/pc/2006/24/en7950gx2-2-pht-1g-dual-dual-graphics-card-launched-by-asus-india/
https://www.gameguru.in/pc/2006/24/en7950gx2-2-pht-1g-dual-dual-graphics-card-launched-by-asus-india/
https://www.gameguru.in/pc/2006/24/en7950gx2-2-pht-1g-dual-dual-graphics-card-launched-by-asus-india/
https://www.gameguru.in/pc/2006/24/en7950gx2-2-pht-1g-dual-dual-graphics-card-launched-by-asus-india/
https://www.gameguru.in/pc/2006/24/en7950gx2-2-pht-1g-dual-dual-graphics-card-launched-by-asus-india/
https://www.gameguru.in/pc/2006/24/en7950gx2-2-pht-1g-dual-dual-graphics-card-launched-by-asus-india/
https://www.gameguru.in/pc/2006/24/en7950gx2-2-pht-1g-dual-dual-graphics-card-launched-by-asus-india/
https://www.gameguru.in/pc/2006/24/en7950gx2-2-pht-1g-dual-dual-graphics-card-launched-by-asus-india/
https://www.gameguru.in/pc/2006/24/en7950gx2-2-pht-1g-dual-dual-graphics-card-launched-by-asus-india/
https://www.gameguru.in/pc/2006/24/en7950gx2-2-pht-1g-dual-dual-graphics-card-launched-by-asus-india/
https://www.gameguru.in/pc/2006/24/en7950gx2-2-pht-1g-dual-dual-graphics-card-launched-by-asus-india/
https://www.gameguru.in/pc/2006/24/en7950gx2-2-pht-1g-dual-dual-graphics-card-launched-by-asus-india/
https://www.gameguru.in/pc/2006/24/en7950gx2-2-pht-1g-dual-dual-graphics-card-launched-by-asus-india/
https://www.gameguru.in/pc/2006/24/en7950gx2-2-pht-1g-dual-dual-graphics-card-launched-by-asus-india/
https://www.gameguru.in/pc/2006/24/en7950gx2-2-pht-1g-dual-dual-graphics-card-launched-by-asus-india/
https://www.gameguru.in/pc/2006/24/en7950gx2-2-pht-1g-dual-dual-graphics-card-launched-by-asus-india/
https://www.gameguru.in/pc/2006/24/en7950gx2-2-pht-1g-dual-dual-graphics-card-launched-by-asus-india/
https://www.gameguru.in/pc/2006/24/en7950gx2-2-pht-1g-dual-dual-graphics-card-launched-by-asus-india/
https://www.khronos.org/

