Non-Foster Reactances for Electrically-Small Antennas, High-Impedance Surfaces, and Engineered Materials

James T. Aberle
Associate Professor of Electrical Engineering
School of Electrical, Computer and Energy Engineering
Arizona State University
Outline of Presentation

• What Does “Non-Foster” Mean?
• Possible Applications of Non-Foster Reactances
 – Electrically Small Antennas
 – High-Impedance Surfaces
 – Artificial High-Permeability Materials
• Realization of Non-Foster Reactances
Outline of Presentation

• **What Does “Non-Foster” Mean?**

• Possible Applications of Non-Foster Reactances
 – Electrically Small Antennas
 – High-Impedance Surfaces
 – Artificial High-Permeability Materials

• Realization of Non-Foster Reactances
Foster’s Reactance Theorem

• The theorem is a consequence of conservation of energy.

• The slope of the input reactance (susceptance) of a lossless passive one-port is always positive.

• All zeros and poles of the impedance (admittance) function are simple, and a zero must lie between any two poles, and a pole between any two zeros.
Consequences of Foster’s Reactance Theorem

- Impedances (admittances) of passive one-port networks rotate clockwise on the Smith Chart as frequency increases.
- There is no such thing as a negative capacitor or a negative inductor (for passive circuits).
Foster Network

\[L_1 = 40 \, \text{nH} \]
\[C_1 = 30 \, \text{pF} \]
\[R_1 = 50 \, \text{Ohm} \]

10.00MHz to 300.0MHz

\[\text{freq (10.00MHz to 300.0MHz)} \]
Non-Foster Network
Outline of Presentation

• What Does “Non-Foster” Mean?
• Possible Applications of Non-Foster Reactances
 – Electrically Small Antennas
 – High-Impedance Surfaces
 – Artificial High-Permeability Materials
• Realization of Non-Foster Reactances
VHF Whip: A Canonical ESA

- Geometry of monopole antenna as modeled in Antenna Model software. The monopole is a copper cylinder 0.6 meters in length and 0.010 meters in diameter, mounted on an infinite perfect ground plane.
- Frequency range is 30 to 90 MHz.
Input Impedance of VHF Whip From Simulation
Two Tools to Help With Analysis

• Exact *two-port* representation of antenna in frequency domain in terms of s-parameters.
• Approximate lumped equivalent circuit model of antenna over frequency range of interest.
Two-Port Representation of Antenna

The quantities in this box are re-evaluated at every frequency for which we have data.
Two-Port Representation of Antenna

\[Z_a = R_a + jX_a = R_r + R_l + jX_a \]

\[R_r = e_{cd} R_a = \text{radiation resistance} \]

\[R_l = (1 - e_{cd}) R_a = \text{dissipative loss resistance} \]

\[X_a = \text{antenna reactance} \]

\[N = \sqrt{\frac{R_r}{Z_0}} \]
Two-Port Representation of Antenna

- Antenna impedance and radiation efficiency are used to produce a Touchstone *.s2p file for use in circuit simulation – the exact two-port representation of the antenna at each frequency for which we have data.
- Allows concepts like transducer power gain and stability measures to be applied to antennas. The latter being particularly important for considering the use of non-Foster reactances in antenna matching networks.
Approximate Equivalent Circuit of the Antenna

- To model the antenna, we assume that the real part of the antenna impedance varies as the square of frequency, and the imaginary part behaves as a series LC.

\[
\bar{Z}_a = R_0 \left(\frac{\omega}{\omega_0}\right)^2 + j\left(\omega L_a - \frac{1}{\omega C_a}\right)
\]

Impedance produced by equivalent circuit
Approximate Equivalent Circuit of the Antenna

- Evaluation of the model parameters \((R_0, L_a\text{ and } C_a)\):

\[
R_0 = \Re\{Z_a(\omega_0)\}
\]

\[
\begin{bmatrix}
\omega_1 & \frac{-1}{\omega_1} \\
\omega_2 & \frac{-1}{\omega_2}
\end{bmatrix}
\begin{bmatrix}
L_a \\
\frac{1}{C_a}
\end{bmatrix} = \begin{bmatrix}
\Im\{Z_a(\omega_1)\} \\
\Im\{Z_a(\omega_2)\}
\end{bmatrix}
\]
Approximate Equivalent Circuit of the Antenna

\[R_0 = 4.30 \, \Omega \]
\[L_a = 194 \, \text{nH} \]
\[C_a = 8.69 \, \text{pF} \]
Matching Network Concept
Points to Consider

- A real passive matching network can only approach and never exceed the performance predicted by the Bode-Fano criterion.
- The matchable bandwidth is limited by the Q of the load.
- The matchable bandwidth can only be increased by de-Qing the load – that is by intentional introduction of dissipative losses into the matching network – and concomitant reduction in radiation efficiency.
Bode-Fano Criterion

\[\frac{\Delta f}{f_0} \leq \frac{\pi}{Q \cdot \ln\left(\frac{1}{\Gamma_m}\right)} \]

Maximum value of fractional bandwidth that can be achieved with any passive, lossless matching network.

\[Q = 81.9, \Gamma_m = \frac{1}{3} \Rightarrow \frac{\Delta f}{f_0} \leq 0.035 \]
Single-Tuned Mid-band Match

Analytical: \[\frac{\Delta f}{f_0} = \frac{1}{\sqrt{2Q}} = 0.009 \]

\[\Delta f \approx \frac{52.2 - 51.8}{52} = 0.008 \]
Wheeler-Lopez Double-Tuned Matching

Figure 3. A double-tuned antenna impedance-matching circuit.

Wheeler-Lopez Double-Tuned Matching

Wheeler-Lopez Double-Tuned Matching with Antenna De-Qing

Decent match, poor efficiency
Matching Network with Non-Foster Reactances

Dualizer

Cancels frequency squared dependence of radiation resistance.

Van Der Pol, Proc, IRE, Feb. 1930

IEEE Waves and Devices 19 Feb 2010
Copyright © 2010James T. Aberle
Antenna with More Practical Matching Network using Non-Foster Reactances.

Active matching network

Two-port model of antenna
Optimized Non-Foster Matching Network

VAR
VAR1
Lm=49.599 (c)
Lneg=-236.589 (c)
Cneg=8.7537 (c)

Eqn
Var

C
=C=-Cneg pF

L
=L=-Lneg nH

L1
L2
L3
R=

Term
Term1
Num=1
Z=50 Ohm

Term
Term2
Num=2
Z=50 Ohm

S2P
SNIP
File="VHF whip.s2p"

IEEE Waves and Devices 19 Feb 2010
Copyright © 2010 James T. Aberle
Outline of Presentation

• What Does “Non-Foster” Mean?

• Possible Applications of Non-Foster Reactances
 – Electrically Small Antennas
 – High-Impedance Surfaces
 – Artificial High-Permeability Materials

• Realization of Non-Foster Reactances
High-Impedance Ground Plane

(a)

(b)

EM Properties of the Sievenpiper High-Impedance Ground Plane

- Surface impedance is (ideally) an open-circuit (emulating a PMC rather than a PEC like a conventional ground plane).
- Propagation of TM and TE surface waves is not supported (thus can be called an electromagnetic bandgap structure).
Model for Surface Impedance of Sievenpiper HIS

For plane waves at normal incidence, the substrate may be understood as an electrically short length of shorted transmission line in parallel with a shunt capacitance at the reference plane of the outer surface.

Phase Angle, θ

Γ

IEEE Waves and Devices 19 Feb 2010
Copyright © 2010 James T. Aberle
Reflection Phase Bandwidth of Sievenpiper HIS

$$\frac{\Delta \omega}{\omega_0} = 2\pi\mu_r \frac{h}{\lambda_0}$$

FSS layer

Spacer layer

Ground plane

μr

h
Electrically-Thin Broadband High-Impedance Surface

• In principle, one could realize an electrically-thin broadband HIS by using a high-permeability spacer layer.

• A high-permeability meta-material can be realized using artificial magnetic molecules (AMMs) implement with negative inductance circuits.

• Unfortunately, AMM performance is very sensitive to component tolerances.

• But, there is a better way …
Electrically-Thin Broadband High-Impedance Surface

Kern, Werner, Wilhelm, APS 2003
Electrically-Thin Conventional HIS

0.062 in Rogers Duroid 5880

\[\frac{\Delta f}{f_0} = 8\% \]

IEEE Waves and Devices 19 Feb 2010
Copyright © 2010 James T. Aberle
Electrically-Thin HIS with Negative Inductance

Diagram Description

- **Term**
 - Term 1
 - Num = 1
 - Z = 377 Ohm

- **L**
 - Lneg = -2.02 nH

- **R**

- **TLINP**
 - TL1
 - Z = \(377/\sqrt{2.2}\) Ohm
 - \(L = 1.6\) mm
 - \(K = 2.2\)
 - \(A = 0.0\)
 - \(F = 1\) GHz
 - \(\text{TanD} = 0.0009\)
 - \(\text{Mur} = 1\)
 - \(\text{TanM} = 0\)
 - \(\text{Sigma} = 0\)

Graph

- Phase vs. Frequency
- Frequency range: 1.0 to 4.0 GHz
- Phase values: \(-10\) to \(15\)
Unit Cell of Sievenpiper HIGP
Reflection Phase Response of Sievenpiper HIGP
Unit Cell of Sievenpiper HIGP with Reactive Loading
Equivalent Circuit of Loaded HIGP for Normally Incident Plane Wave
Reflection Phase of Capacitively Loaded HIGP
Reflection Phase of Negative-Inductor Loaded HIGP

L_{neg} = -2.2 \text{nH}
Outline of Presentation

• What Does “Non-Foster” Mean?
• Possible Applications of Non-Foster Reactances
 – Electrically Small Antennas
 – High-Impedance Surfaces
 – Artificial High-Permeability Materials
• Realization of Non-Foster Reactances
What is an Artificial Material?

• An artificial material is a large-scale emulation of an actual material, obtained by embedding a large number of electrically small inclusions ("artificial molecules") within a host medium.

• Like natural molecules, the electrically small inclusions exhibit electric and/or magnetic dipole moments.

• As a result of these dipole moments, the macroscopic electromagnetic constitutive parameters (ε_r and μ_r) are altered with respect to the host medium.

\[
\begin{align*}
\overline{D} &= \varepsilon \cdot \varepsilon_0 \overline{E} \\
\overline{B} &= \mu \cdot \mu_0 \overline{H}
\end{align*}
\]
Why Create an Artificial Magnetic Material?

• “Naturally” occurring magnetic materials (ferrites) are heavy, fragile and expensive, and they also exhibit relatively high magnetic losses and dielectric constant.

• Available ferrite materials provide a limited selection of relative permeabilities.

• The permeability tensor of the ferrite is controlled by applying a static magnetic field – permanent magnets and/or electromagnets are required.
Artificial Magnetic Metamaterial

• A 3-dimensional lattice of artificial molecules.
• Electrically small loop with a load impedance
Simple Circuit Model for Artificial Magnetic Molecule (AMM)

\[\mu_{xx} = 1 + N \alpha \]

\[\alpha = \frac{m}{H} = -\frac{j \omega \mu \mu_0 a^4}{R_{loss} + j \omega L_{loop} + Z_L} \]

Relative permeability

Number of AMMs per unit volume

Magnetic polarizability of each AMM
Broadband, High Permeability Requires Negative Inductance

\[Z_L = -j\omega L_d \]

Circuit Theory Model
How to Extract Material Properties

(TEM waveguide containing material sample)
How to Extract Material Properties

- HFSS
 - Two port S parameters calculation of TEM waveguide containing material sample.

- MATLAB
 - Shifting of the reference planes.
 - Conversion of S-parameters to ABCD parameters.
 - Calculation of propagation constant and characteristic impedance of equivalent transmission line.
 - Evaluation of the material properties.
How to Extract Material Properties

(Loop Configuration)
Negative Inductance is Modeled as a Frequency-Dependent Capacitance

\[C_{\text{equiv}} = \frac{1}{\left(2\pi f\right)^2} |L_{\text{neg}}| \]
Cancellation of Parasitic Capacitance Using NIC

To remove the resonance, the parasitic capacitance of the loop should be compensated by a negative capacitance.
Remedy for Snoek-Like Phenomenon: Add Negative Capacitance in Shunt with Negative Inductance

for $L=-37.0000\text{nH}$ with $C_{\text{neg}}=0.32\text{pF}$
Outline of Presentation

• What Does “Non-Foster” Mean?
• Possible Applications of Non-Foster Reactances
 – Electrically Small Antennas
 – High-Impedance Surfaces
 – Artificial High-Permeability Materials
• Realization of Non-Foster Reactances
Negative Impedance Converter (NIC)

- An ideal NIC is a two-port network such that when a load impedance is attached to the output terminal, the input impedance is the (possibly scaled) negative value of the load impedance.

\[Z_{in} = -kZ_L \ (k > 0) \]
Canonical NIC

\[Z_{in} = -Z \]
Simple Op-Amp Test Circuit

S_Param
SP1
Start=1 MHz
Stop=4000 MHz
Step=1 MHz

S_Param

Can specify DC gain and unity gain BW.

FOM: RL > 15 dB
Unity-gain BW = 500 MHz

- dB(S(1,1)) = -14.883
- freq = 7.000 MHz

IEEE Waves and Devices 19 Feb 2010
Copyright © 2010 James T. Aberle
NIC Return Loss BW vs. Op-Amp Unity Gain BW

Op-amp based NICs contra-indicated for applications above 30 MHz
Fabricated OPA690 NIC Evaluation Board
Circuit for evaluating the performance of a grounded negative impedance

Stability requires that

\[R_{in} > |Z_L| \]
Schematic captured from Agilent **ADS** of the circuit for evaluating the performance of the OPA690 NIC
Simulated and measured return loss for the OPA690 NIC evaluation circuit
Ground Negative Impedance Versus Floating Negative Impedance

• Canonical NIC and most other NIC circuits in the literature produce grounded negative impedance

• But for the applications we are considering here, we need floating negative impedance
Floating NIC Realized Using Two Op-Amps
S_Param
SP1
Start=0.1 MHz
Stop=100 MHz
Step=0.1 MHz

S-PARAMETERS

MuPrime
MuPrime1
MuPrime1=mu_prime(S)

Mu
Mu1
Mu1=mu(S)

Term
Term1
Num=1
Z=50 Ohm

Term
Term2
Num=2
Z=50 Ohm

R
R1
R=1k Ohm

R
R2
R=1k Ohm

R
R3
R=1k Ohm

R
R4
R=1k Ohm

R
RL
R=50 Ohm

R
Rneg
R=50 Ohm

OpAmp
AMP1
Gain=100 dB
BW=500 MHz

OpAmp
AMP2
Gain=100 dB
BW=500 MHz
Unity-gain BW = 500 MHz
NIC Return Loss BW vs. Op-Amp Unity Gain BW

<table>
<thead>
<tr>
<th>Op Amp BW</th>
<th>15 dB RL NIC BW</th>
</tr>
</thead>
<tbody>
<tr>
<td>500 MHz</td>
<td>3.6 MHz</td>
</tr>
<tr>
<td>1000 MHz</td>
<td>7.2 MHz</td>
</tr>
<tr>
<td>2000 MHz</td>
<td>14.5 MHz</td>
</tr>
</tbody>
</table>
Floating NIC Circuit Using Two Transistors

\[v_1 \quad Q_1 \quad Q_2 \quad v_2 \]

\[i_1 \quad Z_L \quad v_3 \quad v_3' \quad i_2 \]
NIC “All-Pass” Test Circuit
High-Frequency BJT Device Model

VAR
VAR1
Rpi=110
fT=32
gm=900
Rb=7
Cc=Cpi/10
Cpi=gm/(2*pi*fT)

IEEE Waves and Devices 19 Feb 2010
Copyright © 2010 James T. Aberle
Test Circuit Results ($f_T = 32$ GHz)

\[dB(S(1,1)) \]

\[dB(S(2,1)) \]

\[m_1 \]

\[\text{freq} = 502.0\text{MHz} \]

\[dB(S(1,1)) = -19.995 \]
All-Pass -20 dB RL BW v. fT

IEEE Waves and Devices 19 Feb 2010
Copyright © 2010 James T. Aberle
Fabricated Two Transistor Floating NIC Using 2N2222 Devices
Measured Results for Two Transistor FNIC

Measurement Results Magnitudes of $Z\text{in}$

![Graph showing measured results for two transistor FNIC with different resistor values at various frequencies.](image-url)
Summary of NIC Developments

• We’ve had some successes in fabricating NICs that work up to about 50 MHz.
• We have had many more failures.
• The main issue concerns stability – small and large signal stability.
• We are making progress, albeit very slowly …
• Someday, someone will make a reliable FNIC that works into the 100s of MHz range.
How Best to Use a NIC to Make a Non-Foster Reactance?

- Direct negation:
How Best to Use a NIC to Make a Non-Foster Reactance?

- Using a certain transformation:

Verman, Proc. IRE, Apr. 1931
Negative Impedance Transformation

\[Z_{in}(s) = \frac{(R + Z_L(s))(-R)}{Z_L(s)} + R = \frac{-R^2}{Z_L(s)} \]

- Can develop an NIC that needs to work for only one value of real impedance
- Also suggests the possibility of using negative resistance diodes (Tunnel, Gunn, etc.) for NIC realization
Negative Impedance Transformation

\[
\begin{align*}
Z_L(s) &= sL \\
&\quad + \frac{1}{sC} \\
&\quad + \frac{1}{sC + \frac{1}{sL}} \\
Z_{in}(s) &= -1 \\
&\quad + \frac{1}{sC_{neg}} \\
&\quad + \frac{1}{sC_{neg} + \frac{1}{sL_{neg}}} \\
L_{neg} &= R^2 C \\
C_{neg} &= \frac{L}{R^2}
\end{align*}
\]
Schematic captured from Agilent ADS of VHF monopole with active matching network
Simulated return loss at input of optimized active matching network and antenna

Return Loss (dB)

freq, MHz

dB(S(1,1))
Overall efficiency (in percent) of optimized active matching network and antenna
Small-signal geometrically-derived stability factor for the optimized active matching network and antenna
Outline of Presentation

• What Does “Non-Foster” Mean?
• Possible Applications of Non-Foster Reactances
 – Electrically Small Antennas
 – High-Impedance Surfaces
 – Artificial High-Permeability Materials
• Realization of Non-Foster Reactances
Summary

- The use of non-Foster reactances could improve the performance of ESAs and HIGPs dramatically.
- Some hard-won successes have been achieved in the development of the requisite NICs.
- But an interdisciplinary team with expertise in circuits as well as field theory and sufficient funding is needed to realize reliable high frequency non-Foster reactances and to integrate them into electromagnetic devices.