Perceiving Graphical and Pictorial Information via Hearing and Touch

IEEE Signal Processing Society, Santa Clara
May 21, 2015

Thrasos Pappas
EECS, Northwestern University
On Sabbatical Leave at LLNL
People

- Pubudu Madhawa Silva, Northwestern Univ. – now at Intel
- Andrew Seward, Northwestern Univ.
- Dzung Nguyen, Northwestern Univ.
- Joshua Atkins, Johns Hopkins Univ. – now at Beats by Dr. Dre
- James E. West, Johns Hopkins Univ.
- William M. Hartmann, Michigan State Univ.
- James D. Johnston, independent consultant – formerly Bell Labs
- Karen Gourgey, Baruch College, CUNY
- Ilona Kretzschmar, CCNY, CUNY
- Vivien Tartter, CCNY, CUNY
Visual to Tactile-Acoustic Mapping

- Present a picture as a collection of segments with perceptually distinct tactile-acoustic textures
 - Tactile texture and sound (plus vibrations, variable friction, etc.)
- Active exploration with the finger or a pointer
 - Kinesthetic feedback
- Haptic space and scene perception
 - Advantages over line drawings
Other Approaches

- Invasive prosthesis
- Tongue display [Bach-y-Rita et al., 2002]
- “vOICe” [Meijer, 1992]
 - 64x64 image of 16 graylevels mapped to tones
 - Vertical: frequency; horizontal: time and stereo panning; loudness ~ brightness
- “SoundView” [Doel et al., 2003]
 - Tablet with pointer, colors mapped to sounds
- Raised line drawings [Wijntjes et al., 2008]
- NOMAD [Parkes, 1988]
- Talking Tactile Maps [1994]
- Talking Tactile Tablet [Landau & Wells ’03]
- Halftoning [Nayak & Barner ’04]
- Dynamic variable friction displays
 - Tesla touch [Xu ’11; Israr ’12]
 - On Glass [Winfield ’07; Chubb ’09; Marchuk ’10; …]
- Audio tactile maps [Jacobson ’98; Parkes ’88; Blenkhorn ’94; Landau, 2003; Parente ’03]
Motivation: Dynamic Tactile Tablet

• “Dynamic Tactile Interface for Visually Impaired and Blind People”
 – I. Kretzschmar, K. Gourney, V. Tartter, L. Abts, J. West, T. Pappas

• Three layers
 – Top: deformable electroactive polymer film
 – Middle: electrodes to address positions on the film
 – Bottom: touch sensitive screen

• Display dynamic tactile patterns (fast dynamic response)
• Fully addressable
• Detect finger position
• Audio feedback
Braille

Dot diameter: 1.3 mm
Dot spacing: 2.5 mm
Dot Height: 0.5 mm [NLS 2005]

Letters:

<table>
<thead>
<tr>
<th>a</th>
<th>b</th>
<th>c</th>
<th>d</th>
<th>e</th>
<th>f</th>
<th>g</th>
<th>h</th>
<th>i</th>
<th>j</th>
</tr>
</thead>
<tbody>
<tr>
<td>k</td>
<td>l</td>
<td>m</td>
<td>n</td>
<td>o</td>
<td>p</td>
<td>q</td>
<td>r</td>
<td>s</td>
<td>t</td>
</tr>
<tr>
<td>u</td>
<td>v</td>
<td>w</td>
<td>x</td>
<td>y</td>
<td>z</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Numbers:

| 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 0 |

[Source: Loomis 1981]
Device Model

- Simulate with polydimethylsiloxane (PDMS)
 - Milling machine to create molds in polypropylene or acrylic
- Assume
 - Fully addressable array, static patterns
 - Two states at each site (raised or flat)
 - Circularly symmetric, bell-shaped bumps
- Control spacing, diameter, height, and shape of dots
- Material properties: softness, friction
 - PDMS vs. embossed paper
Tactile Pattern Generation

- Generate perceptually distinct tactile textures
- Leverage existing techniques: digital halftoning
- Visual patterns: Minimize visibility of halftone-induced textures
- Tactile patterns: Accentuate texture characteristics

Dot diameter: 1.0 mm Spacing: 1.0 mm Height: 0.2 mm
Visual Vs. Tactile Pattern Perception

- Visually pleasing blue noise pattern
 - Floyd-Steinberg error diffusion
 - High frequency noise, less visible
- Tactile impression: smooth, boring

- Visually less pleasing
 - Error diffusion with weight perturbations
 - Contains more low frequencies
- Tactile impression: interesting, exciting

- Visually impaired and blind subjects
- Visually blocked subjects
Tactile Patterns

Decreasing Density

Equal Density – Different Pattern
Physical Density (Across Dot Density)
Perceived Density (Across Dot Density)

- Perceived closely matches physical density

No significant difference

Significant Difference

~ 0.35
95% Confidence
Roughness (Across Dot Density)

- “When the elements get too sparse, on the order of 3-4 mm apart, people do not perceive the surface as textured.” [Klatzky, Lederman ’02]
Patterns
Devices

- **Tactile Sensing**
 - iPhone, iPad, other touch screen interfaces

- **Tactile Display?**
 - Variable friction
 - Vibration
 - Mechanical pin arrays
 - Dynamic electrically activated dot patterns?
 - Dynamic Tactile Tablet

- **Acoustic Display**
 - Use finger to actively explore 2-D layout on touch screen
 - Touch used as pointing device
 - Provides kinesthetic feedback
 - Static tactile overlay
Conveying Shape

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>C1</td>
<td>2 Constant sounds</td>
</tr>
<tr>
<td>C2</td>
<td>3 Constant sounds</td>
</tr>
<tr>
<td>C3</td>
<td>2 Tremolo sounds with varying border rate</td>
</tr>
<tr>
<td>C4</td>
<td>3 Sounds with varying border intensity</td>
</tr>
<tr>
<td>C5</td>
<td>3 Sounds with HRTF (directionality and proximity) in background and border – original: KEMAR, modified: human</td>
</tr>
</tbody>
</table>
Shape C1: Two Constant Sounds

- Two regions with distinct constant sounds

Silva, et al., ICASSP 2011
Shape C2: Three Constant Sounds

- Three regions with distinct constant sounds

Silva, et al., ICASSP 2011
Shape C4: Three Sounds, Variable Intensity Border

- Background and object: constant sounds
- Border: variable intensity

Silva, et al., submitted
Shape C5: Three Sounds, Directional Sounds

- Use directional acoustic feedback (background and border)
- Head Related Transfer Function (HRTF)
- Playback via stereo headphones

Silva, et al., ICASSP 2011
Shape - Experiments

- Two sets of experiments with basic shapes
- First set with 21 subjects – touch screen users (except one)
 - C1-2cons, C2-3cons, C3-2trem, C5-3hrtf-ke
- Second set with different subjects
 - Unaltered C2-3cons – for comparison
 - Added C4-3int
 - Modified C5-3hrtf-hu (better sounds, human HRTFs)
- 6 subjects – touch screen users (experienced)
- 5 subjects – little experience with touch screen devices
- Apple iPad touch screen
- SENNHEISER HD595 headphones
Experimental Procedure

- Subjects had **no prior information** about the objects they were going to be tested on.

- **Training example** with the same task but **different object (or scene)** at the beginning of each experiment.

 - Initially, the subject was able to see the pattern/shape and the scanning finger on the touch screen.

 - Then, the subject repeated the trial without seeing the pattern/shape or the finger.
Shape - Results

First set of experiments

<table>
<thead>
<tr>
<th></th>
<th>C1-2cons</th>
<th>C2-3cons</th>
<th>C3-2trem</th>
<th>C5-3hrtf-ke</th>
</tr>
</thead>
<tbody>
<tr>
<td>Accuracy</td>
<td>67%</td>
<td>81%</td>
<td>72%</td>
<td>80%</td>
</tr>
<tr>
<td>Time</td>
<td>236 s</td>
<td>228 s</td>
<td>181 s</td>
<td>182 s</td>
</tr>
</tbody>
</table>

Second set of experiments

<table>
<thead>
<tr>
<th></th>
<th>C2-3cons</th>
<th>C4-3int</th>
<th>mC5-3hrtf-hu</th>
</tr>
</thead>
<tbody>
<tr>
<td>Accuracy</td>
<td>70%</td>
<td>82%</td>
<td>73%</td>
</tr>
<tr>
<td>Accuracy (6 subjects)</td>
<td>78%</td>
<td>89%</td>
<td>89%</td>
</tr>
<tr>
<td>Time</td>
<td>331 s</td>
<td>259 s</td>
<td>189 s</td>
</tr>
<tr>
<td>Time (6 subjects)</td>
<td>243 s</td>
<td>212 s</td>
<td>103 s</td>
</tr>
</tbody>
</table>
Shape Approximations: C1 – C5
Circle Approximations: C1 – C5

<table>
<thead>
<tr>
<th></th>
<th>S7A</th>
<th>S2A</th>
<th>S3A</th>
<th>S5A</th>
</tr>
</thead>
<tbody>
<tr>
<td>C1</td>
<td>C1</td>
<td>C1</td>
<td>C1</td>
<td>C5</td>
</tr>
<tr>
<td>C2</td>
<td>C2</td>
<td>C2</td>
<td>C2</td>
<td>C5</td>
</tr>
<tr>
<td>C3</td>
<td>C3</td>
<td>C3</td>
<td>C5</td>
<td>C5</td>
</tr>
<tr>
<td>C5</td>
<td>C5</td>
<td>C5</td>
<td>C5</td>
<td>C5</td>
</tr>
</tbody>
</table>
Shape – Simple Layout

C6 Virtual cane – acoustic display with zoomed-in mode

C7 Virtual cane – acoustic display with tactile overlay

- Tapping sounds for objects; silent background
- Zoomed-in mode: one shape presented with C5

<table>
<thead>
<tr>
<th></th>
<th>C6-cane-ac-zm</th>
<th>C7-cane-ac-ta</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of Subjects</td>
<td>21</td>
<td>5</td>
</tr>
<tr>
<td>Number of Objects</td>
<td>100%</td>
<td>100%</td>
</tr>
<tr>
<td>Shape Accuracy</td>
<td>23%</td>
<td>100%</td>
</tr>
<tr>
<td>Material Identification</td>
<td>80%</td>
<td>73%</td>
</tr>
<tr>
<td>Time</td>
<td>745 s</td>
<td>240 s</td>
</tr>
</tbody>
</table>
Drawings for C6

- Subjects were asked to draw objects in scene indicating their relative positions, shapes, and the material they are made off.
Shape - Conclusions

- Outperformed all existing techniques
 - Acoustic displays: SoundView, vOICe
 - Dynamic tactile displays: Tesla Touch
- Considered advantages of proximity & directionality cues
- Virtual Cane
 - Acoustic-tactile (C7) significantly better than acoustic with zoom (C6) in both accuracy and time
 - Raised dot patterns best for shape rendition
- Considerable learning curve
 - Significant difference in accuracy (with comparable or better time) between experienced and inexperienced subjects
 - Performance could be improved by systematic training
2-D Object Layout
Locating Object: Sound Rendering

- **Directionality**
 - Head Related Transfer Function – HRTF
 - Natural cue: Models acoustic signals that enter ear from source at given location

- **Proximity**
 - Natural cues: Intensity, direct-to-reverberant energy ratio, spectrum distortions, binaural differences
 - Humans are consistently inaccurate in acoustic proximity judgments [Zahorik ICAD’02, JASA’02]
 - Use intuitive cues (not realistic)
 - Relative intensity of object tone and background noise
 - Tempo variations
Nav: Navigation Experiment

- Task: locate a single dot as fast as possible – and notify
- Multiple trials in a fixed time window (10 minutes)
- Random object placement in each trial
- Measure time per trial
- **Object**: tone; **background**: tone + white noise
- Proximity via **intensity** or **tempo** variations
Locating Object: Intensity

- Directionality via HRTF
- Proximity via relative intensity
 - Tone-to-noise intensity ratio
Locating Object: Tempo

- Directionality via HRTF
- Proximity via tempo variations
 - Quantized to 3 levels (1 – 3 Hz)
NAV: Intensity vs. Tempo

- 8 subjects: 4 male, 4 female
- Intensity: mean = 25.6 s, median = 15.6 s
- Tempo: mean = 32 s, median = 19.8 s
- No significant differences (t-test: p = 0.31)
- Intensity: rendition is instantaneous; continuum of values (vs. a few levels of tempo)
Serial Layout – L1

- Objects presented serially, one at a time
- Starts with object closest to the finger
- Double taps to get the next
- Presented in cycles and visited marked ‘inactive’
Serial Layout – L1: HRTF + Intensity

- HRTF for directionality; intensity (tone-to-noise ratio) for proximity
- Pitch for object identification (452, 652, 852 & 1052 Hz)
- Subjects asked to draw object corresponding to each sound in graph sheet
- No time limitations; not allowed to draw during exploration
- Implemented on iPad 1
- 4 Subjects, 2 male, 2 female
Serial Layout – L1: Results

- Average time: 7 mins
Serial Layout – L1: Problems

- Proximity rendering via intensity (tone-to-noise ratio)
 - Insensitivity of intensity for small finger movements
- Object confusions
 - Hard to discriminable and memorize sounds
- “Manhattan scanning”
- Serial exploration
Layout: Enhancements

- Directionality rendering
 - 54 quantization levels: 5^0 steps for $[-45^0, 45^0]$; 10^0 steps otherwise
 - Boosted high frequencies of sounds

- Calibrated proximity vs. volume curve
 - Measured the relationship between tablet volume and intensity
 - SPL at headphones measured for 50 uniform volumes of 1KHz sine
 - Curve designed such that SPL is uniformly varied with proximity

- Proximity via direct-to-reverberant ratio
 - Natural proximity cue

- Musical instrument sounds

- Listener orientation

- Non-serial scanning
Sound Selection: Percussion vs. Wind

- **Navigation experiment**
 - 4 male subjects
 - Object: Bongo roll vs. trumpet
 - Background: object sound + reverb + directionality + proximity
 - Different tempo for object and background

- **Time per trial**
 - Bongo roll: mean = 14 s, median = 10.1 s
 - Trumpet: mean = 13.4 s, median = 9 s
 - No significant difference (t-test: p=0.47)

- **Conclusion**: Enables use of diverse set of sounds
Virtual Listener Orientation

- Not the subject’s physical head orientation
- Fixed orientation (FO): north
 - May be a reason for Manhattan scanning – ears most sensitive to head-on directionality changes
- Use direction of scanning pointer (virtual listener) movement
 - Based on the scanning trajectory (TO: trajectory orientation)
 - Analogous to natural human behavior
 - Face object as you move toward the object
 - Will this eliminate Manhattan scanning?
 - Will this add confusion?
Fixed vs. Trajectory Orientation

- Navigation Experiment to determine the best method
 - 10 subjects, bongo roll for object sound

- Time per trial
 - FO: mean = 12.1 s (median = 9.5 s) TO: mean = 17.9 s (median = 13.2 s)
 - Significant difference (t-test: p=0.01)

- Subject ratings
 - Difficulty: FO: mean = 3.3 TO: mean = 5.8
 - Cognitive load: FO: mean = 2.95 TO: mean = 5.7
 - Significant difference in Difficulty (p=0.02) and Cognitive load (p=0.01)
Voronoi Layout

- All objects are available on the screen at once
- Subject hears only sound of object closest to finger location
 - Sound guides to object in the region
- Screen is partitioned to Voronoi regions of object centers
- Each object’s background is limited to its Voronoi region
L2-vor: Voronoi Layout

- Initial mode: Serial introduction of objects
- Main mode: Voronoi layout
- 6 subjects, FO
- Sounds
 - G3 (note G of 3rd octave) of bass clarinet
 - B3 of oboe
 - D5 of trumpet with no vibrato
 - Bongo roll
L2-vor Results

- Average time: 8 minutes
L3-ung: Unguided Layout

- Each object identified by characteristic sound
- Background is silent
 - Arbitrary scanning
- Used as benchmark to analyze the effectiveness of acoustic guidance (directionality and proximity)
- Experiment
 - 3 subjects (out of 6 subjects of L2-vor)
 - Same 4 sounds as L2-vor experiment
 - Layout was the transpose of L2-vor
L3-ung Results

- No confusions
- Average time 14 minutes
Comparison: L1, L2 & L3

- Error of reproduction (EOR)
 - Displacement between object location and subject placement
 - Measured in pixels
 - Averaged across objects and subjects
 - Normalized for resolution
 - Expressed as percentage of maximum distance for given resolution

<table>
<thead>
<tr>
<th>Layout</th>
<th>EOR</th>
<th>Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>L1-ser</td>
<td>16.6%</td>
<td>7 minutes</td>
</tr>
<tr>
<td>L2-vor</td>
<td>9.9%</td>
<td>8 minutes</td>
</tr>
<tr>
<td>L2-vor after correcting for confusions</td>
<td>4.9%</td>
<td></td>
</tr>
<tr>
<td>L3-ung</td>
<td>4.1%</td>
<td>14 minutes</td>
</tr>
</tbody>
</table>
Does Acoustic Guidance Help?

- Objects were represented by dots of 0.2 inch radius
- 4 dots took 4.5% of the total screen area

- How does the performance scale with object size?
- Conducted 3 navigation experiments
 - Silent (unguided) background (UG)
 - Guided background (GG)
 - With directionality and proximity as in L2-vor
 - All with bongo roll assigned to object
NAV: Dot Size Effect on Localization
Guided vs. Unguided

- Two dot sizes of
 - Large size: 0.20 inch radius – original size
 - Small size: 0.05 inch radius – 1/16 of original area
- Stylus scanning only
- 3 subjects – will add more subjects

<table>
<thead>
<tr>
<th>Experiment</th>
<th>Mean of trial times</th>
<th>Median of trial times</th>
</tr>
</thead>
<tbody>
<tr>
<td>GG - Large dot</td>
<td>12.1 s</td>
<td>9.5 s</td>
</tr>
<tr>
<td>GG - Small dot</td>
<td>11.7 s</td>
<td>11.0 s</td>
</tr>
<tr>
<td>UG - Large dot</td>
<td>93 s</td>
<td>80 s</td>
</tr>
<tr>
<td>UG - Small dot</td>
<td>382 s</td>
<td>331 s</td>
</tr>
</tbody>
</table>
Venn Diagram

- Background is silent
- Similar to the Voronoi layout representation
 - Circular area analogous to the Voronoi region
 - With the exception of possible overlaps between circles
 - Circle center represented by a small dot (radius 0.07 inches) analogous to the object
- Multiple sounds played in overlaps
Venn Diagram

- Proximity rendition similar to L2
 - But, intensity change depends on radius of each circle (maximum at center, minimum at the edge)
 - Thus, intensity gradient provides cue for circle size

- Goal is to convey
 - Relative position and size of each circle
 - Amount of overlap – as a percentage of the smaller circle area

- Experiment
 - Subjects had to select among different choices
 - Subjects were then asked to draw and label the diagram
Venn Diagram: Results

- 6 Subjects
- Available choices
 - Overlap: none, 10 – 40%, 40 – 60%, 60 – 90%, full
 - Location: N, NE, E, SE, S, SW, W, NW, N
 - Size: small, medium, large
- Actual overlaps
 - A & B : 16%
 - B & C : 59%
- All accuracies are better than the chance values
Conclusions: Shape

(Red indicates statistically significant results)

- Use of spatial sound (directionality and proximity cues)
 - Offers faster shape rendition for comparable or better accuracy
 - Performance (accuracy) can be improved significantly with training

- Raised-dot patterns
 - provide best shape rendition (in terms of time and accuracy)
 - but current technology does not allow dynamic display

- Friction display
 - Inferior to both for shape rendition
Conclusions: Localization

- Use of spatial sound (directionality and proximity cues)
 - Fixed head orientation superior to trajectory orientation in terms of time, difficulty, and cognitive load
 - Advantages depend on scene resolution
 - Large dot size: spatial sound outperforms unguided localization in terms of time to dot
 - Small dot size: Performance remains the same for spatial sound; goes down significantly for unguided layout
General Conclusions

- Dynamic (and static) acoustic-tactile representation of visual signals
 - Designed and implemented several configurations
 - Conducted pilot subjective tests that offer some statistically significant results, but also, many valuable insights for the design of further systematic tests with visually impaired and visually blocked subjects
- Acoustic display
 - Dynamic
 - Good for object identification
 - Can be used for shape rendition and object localization
- Raised dot display
 - Good for shape rendition
- Simple and intuitive concepts yield better results than natural analogies (fixed vs. trajectory orientation)
- Applications: Virtual cane, Venn diagrams