RF ESD Protection Strategies – The Design and Performance Trade-off Challenges

T.Nakaie, M.Sawada, T.Hasebe

A.Concannon, V.Vashchenko, M.ter Beek
Outline of Presentation

• Introduction
• Key performance parameters
• Diode protection with Power Clamp
• Inductor protection with Power Clamp
• Full circuit – ESD co-design
• Partial circuit – ESD co-design
• Conclusions
Introduction: RF circuit design

Integrated RF front-ends @ 5.5 GHz
- 90nm CMOS technology
- BiCMOS technology

Typical design for performance:
- Large gain
- Low noise
- Linearity

➤ But ESD protection is often overlooked
Introduction: RF circuit design

Common issues of ESD protection:
• Extra input capacitance
• Gain reduction
• Noise increase
• ...

➢ Comparison of advantages and disadvantages of several ESD protection strategies
Introduction: ESD protection

- Diode protection with power clamp
- Inductor protection with power clamp
- Distributed protection
- Resonant and cancellation
- Co-design
Key performance parameters

<table>
<thead>
<tr>
<th>Performance figure</th>
<th>Target Value (@ f_C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>f_C</td>
<td>5.5 GHz</td>
</tr>
<tr>
<td>S11</td>
<td><-10 dB</td>
</tr>
<tr>
<td>S22</td>
<td><-10 dB</td>
</tr>
<tr>
<td>S21</td>
<td>>15 dB</td>
</tr>
<tr>
<td>S12</td>
<td><-30 dB</td>
</tr>
<tr>
<td>NF</td>
<td>< 3 dB</td>
</tr>
<tr>
<td>IIP3</td>
<td>As high as possible</td>
</tr>
<tr>
<td>Ptot</td>
<td>As low as possible</td>
</tr>
<tr>
<td>Area</td>
<td>As small as possible</td>
</tr>
<tr>
<td>ESD protection level</td>
<td>> 2 kV HBM</td>
</tr>
</tbody>
</table>
Key performance parameters

- **Low-power RF Figure-Of-Merit**

\[
FOM_1[mW^{-1}] = \frac{Gain[abs]}{(NF[abs] - 1).P_{DC}[mW]}
\]

- **Brederlow’s RF Figure-Of-Merit**

\[
FOM_2[GHz] = \frac{Gain[abs].IIP3[mW].f_c[GHz]}{(NF[abs] - 1).P_{DC}[mW]}
\]
Diode protection with Power Clamp

BiCMOS LNA

- $F_c = 5.5$ GHz
- P_n and N_p diodes of $71 \mu m^2$ (~100fF)
- $S21$ reduction
- $NF: +0.4$ dB
- FOM_2 increase
- $50V \rightarrow 3kV$ HBM
Diode protection with Power Clamp

90nm CMOS LNA
- $F_c = 5$ GHz
- P_n and N_p diodes of $65\mu m^2$ ($\sim 100fF$)
- S_{21} reduction
- NF: +0.6 dB
- FOM_2 increase
- $<50V \rightarrow 500V$ HBM
- Insufficient: Why?
Diode protection with Power Clamp

Insufficient protection

- ESD current path B
- Parasitic current path A
Diode protection with Power Clamp

Insufficient protection:
• BiCMOS LNA: parasitic ESD current flows through L_G, emitter diode and L_S to ground
• 90nm CMOS LNA: parasitic ESD current loads gate capacitor and builds up over-voltage

Solutions:
• On-chip capacitor
• Series resistor
Inductor protection with Power Clamp

\[I_{\text{BIAS}} \]
\[M_1 \]
\[R \]
\[L_g \]
\[C_c \]
\[D_3 \]
\[D_4 \]
\[D_5 \]
\[M_1' \]
\[I_{\text{BIAS}} \]
\[M_2 \]
\[C_1 \]
\[V_{\text{DD}} \]
\[C_{\text{DEC}} \]
\[L_{\text{load}} \]
\[C_{\text{DEC}} \]
\[C_{\text{pad}} \]

CICC05 - IMEC
Inductor protection with Power Clamp

Addition of inductor as “plug-n-play”
 - Diverts ESD current to ground
 - Is transparent for the RF signal

Inductor selection:
 - S11 input matching
 - **Over-voltage** at the gate during ESD
 - Parasitic **resistance** of the inductor during ESD and in RF operation
Inductor protection with Power Clamp

![Graph showing S11 (dB) vs Frequency (GHz) for different inductor values: no inductor, 1nH inductor, 2nH inductor, 3nH inductor, 5nH inductor. The graph illustrates the impact of adding inductors on the S11 parameter across a frequency range of 2 GHz to 10 GHz.]
Inductor protection with Power Clamp

Vgate (V) vs. Time (s)

- 5nH inductor
- 3nH inductor
- 2nH inductor
- 1nH inductor
Inductor protection with Power Clamp
Inductor protection with Power Clamp

- Measurement results

[Graph showing Gain (S21), Input reflection (S11) vs Frequency [GHz] for ESD protected LNA and Reference LNA, and Noise figure 50 Ω vs Frequency [GHz] for ESD protected LNA and Reference LNA]
Inductor protection with Power Clamp

Gate over-voltage protection

• Add a minimum size reverse diode at the gate to block negative over-voltage

• Add two minimum size forward diodes at the gate, biased at 0.6V to block positive over-voltage

These diodes are placed right in front of the gate
Inductor protection with Power Clamp

Schematic with additional diodes to clamp the voltage at M1
Inductor protection with Power Clamp

<table>
<thead>
<tr>
<th>Circuit</th>
<th>LNA</th>
<th>ESD-LNA</th>
<th>ESD-LNA</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>no ESD</td>
<td>w/o diodes</td>
<td>with diodes</td>
</tr>
<tr>
<td>Vdd [Volt]</td>
<td>1.2</td>
<td>1.2</td>
<td>1.2</td>
</tr>
<tr>
<td>Current [mA]</td>
<td>7.5</td>
<td>7.5</td>
<td>7.5</td>
</tr>
<tr>
<td>Gain [dB]</td>
<td>13.5</td>
<td>12.6</td>
<td>12</td>
</tr>
<tr>
<td>S11 [dB]</td>
<td>-21</td>
<td>-18</td>
<td>-24</td>
</tr>
<tr>
<td>S22 [dB]</td>
<td>-11</td>
<td>-14</td>
<td>-14</td>
</tr>
<tr>
<td>S12 [dB]</td>
<td>-31</td>
<td>-32</td>
<td>-32</td>
</tr>
<tr>
<td>NF [dB]</td>
<td>2.2</td>
<td>3.2</td>
<td>3.4</td>
</tr>
<tr>
<td>1dB CP [dBm]</td>
<td>-11.5</td>
<td>-10.5</td>
<td>-9.6</td>
</tr>
<tr>
<td>IIP3 [dBm]</td>
<td>-1</td>
<td>-0.5</td>
<td>0.4</td>
</tr>
<tr>
<td>TLP [A]</td>
<td>-</td>
<td>2.2</td>
<td>4</td>
</tr>
<tr>
<td>HBM [kV]</td>
<td>0.009</td>
<td>2.5</td>
<td>5.5</td>
</tr>
<tr>
<td>MM [V]</td>
<td>-</td>
<td>225</td>
<td>350</td>
</tr>
</tbody>
</table>
Inductor protection with Power Clamp

- Measurement results
Full circuit – ESD co-design

• ESD protection is integrated into the matching circuit
• Typical matching circuit is extended to include ESD protection
Full circuit – ESD co-design

Schematic including the ESD protection into the matching circuit
Full circuit – ESD co-design

<table>
<thead>
<tr>
<th>Circuit</th>
<th>LNA no ESD</th>
<th>ESD-LNA Co-design</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vdd [Volt]</td>
<td>1.2</td>
<td>1.2</td>
</tr>
<tr>
<td>Current [mA]</td>
<td>7.5</td>
<td>7.5</td>
</tr>
<tr>
<td>Gain [dB]</td>
<td>13.5</td>
<td>16.2</td>
</tr>
<tr>
<td>S11 [dB]</td>
<td>-21</td>
<td>-11.5</td>
</tr>
<tr>
<td>S22 [dB]</td>
<td>-11</td>
<td>-8</td>
</tr>
<tr>
<td>S12 [dB]</td>
<td>-31</td>
<td>-25.4</td>
</tr>
<tr>
<td>NF [dB]</td>
<td>2.2</td>
<td>3.5</td>
</tr>
<tr>
<td>1dB CP [dBm]</td>
<td>-11.5</td>
<td>-15.4</td>
</tr>
<tr>
<td>IIP3 [dBm]</td>
<td>-1</td>
<td>-5</td>
</tr>
<tr>
<td>HBM [kV]</td>
<td>0.009</td>
<td>1.9</td>
</tr>
</tbody>
</table>
Full circuit – ESD co-design

- Measurement results

![Graphs showing Gain (S21) and Noise figure with ESD protected LNA and Reference LNA comparison.](image-url)
Partial circuit – ESD co-design

• Determine **parasitic loading** due to the ESD protection and other parasitics
• Take this value into account for input/output **matching**

Opposite to previous methods
• Determine ESD robustness
• Optimize LNA for this robustness
Partial circuit – ESD co-design

bonding wire
bondpad

CICC05 - IMEC 27
Partial circuit – ESD co-design

- Measurement results for an ultra wideband LNA in 0.35μm BiCMOS technology
Conclusions

• Comparison of 4 RF ESD protection strategies with respect to their respective performance trade-offs
• Discussion of the limiting factors and proposal of solutions for further improvement
• Review of the performance parameters for 90nm CMOS LNA’s at 5 GHz
Conclusions

<table>
<thead>
<tr>
<th>Circuit</th>
<th>LNA</th>
<th>LNA diodes</th>
<th>ESD-LNA inductor w/o diodes</th>
<th>ESD-LNA inductor with diodes</th>
<th>ESD-LNA co-design</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vdd [V]</td>
<td>1.2</td>
<td>1.2</td>
<td>1.2</td>
<td>1.2</td>
<td>1.2</td>
</tr>
<tr>
<td>Current [mA]</td>
<td>7.5</td>
<td>7.5</td>
<td>7.5</td>
<td>7.5</td>
<td>7.5</td>
</tr>
<tr>
<td>Gain [dB]</td>
<td>13.5</td>
<td>13</td>
<td>12.6</td>
<td>12</td>
<td>16.2</td>
</tr>
<tr>
<td>S22 [dB]</td>
<td>-11</td>
<td>-14.5</td>
<td>-14</td>
<td>-14</td>
<td>-8</td>
</tr>
<tr>
<td>S12 [dB]</td>
<td>-31</td>
<td>-30</td>
<td>-32</td>
<td>-32</td>
<td>-25.4</td>
</tr>
<tr>
<td>NF [dB]</td>
<td>2.2</td>
<td>3</td>
<td>3.2</td>
<td>3.4</td>
<td>3.5</td>
</tr>
<tr>
<td>1dB CP [dBm]</td>
<td>-11.5</td>
<td>-10.6</td>
<td>-10.5</td>
<td>-9.6</td>
<td>-15.4</td>
</tr>
<tr>
<td>IIP3 [dBm]</td>
<td>-1</td>
<td>-0.4</td>
<td>-0.5</td>
<td>0.4</td>
<td>-5</td>
</tr>
<tr>
<td>TLP [A]</td>
<td>-</td>
<td>-</td>
<td>2.2</td>
<td>4</td>
<td>-</td>
</tr>
<tr>
<td>HBM [kJ]</td>
<td>0.009</td>
<td>0.5</td>
<td>2.5</td>
<td>5.5</td>
<td>1.9</td>
</tr>
<tr>
<td>MM [V]</td>
<td>-</td>
<td>-</td>
<td>225</td>
<td>350</td>
<td>-</td>
</tr>
</tbody>
</table>

CICC05 - IMEC