Nehalem-EX: a 45nm, 8-core Enterprise Processor

Stefan Rusu
Intel Corporation
Santa Clara, CA

stefan.rusu@intel.com
Outline

- Process Technology
- Processor Scaling Trends
- Block Diagram and Die Photo
- Cache Design
- Core and Cache Recovery
- Clock and Voltage Domains
- Power, Package and Thermals
- I/O Links
- Idle Power Reduction
- Summary
45nm Hi-k Metal Gate Technology

World’s first Hi-k Metal Gate CMOS transistors integrated with 3rd generation strained silicon

K. Mistry, IEDM 2007
Gate Leakage Reduction

HK+MG significantly reduces gate leakage

K. Mistry, IEDM 2007
Xeon® EX Multi-Core Scaling Trend

Two additional cores every year

S. Rusu, ISSCC 2009
Processor Block Diagram

- 8 cores, 16 threads, 2 integrated memory controllers
- 4 point-to-point Quick Path Interconnect links
- Two Scalable Memory Interfaces per memory controller
- Two counter rotating rings to minimize latency
Platform Configuration Examples

2 Processors

4 Processors

8 Processors
Die Photo

The largest device count reported for a microprocessor

2.3B transistors
3MB L3 Cache Slice

24 ways, 64B line size, 48 sub-arrays per slice
DECTED in data arrays, SECDED in tag arrays
Clock Domains

- 3 primary clock domains:
 - Core
 - Un-core
 - I/O
- 16 PLLs & 8 DLLs
 - Single system clock input (BCLK)
PLL Reference Clocks

Reference clocks are distributed to 15 destinations
Simulated Un-Core Clock Skew Profile

- Relative un-core clock skew to ~34.8K regional clock buffer receivers
- Simulation based on 100% layout extracted model
Multiple Voltage Domains

Multiple voltage domains minimize power consumption across the core and uncore areas
Core and Cache Recovery Example

Disabled 2 cores and 2 cache slices
Minimize Power in Disabled Blocks

- Disabled cores ➤ Power gated

- Disabled cache slices ➤ All major arrays in shut-off
Core and Cache Recovery – Infrared Image

All cores and cache slices are enabled
Core and Cache Recovery – Infrared Image

Shut-off 2 cores (top row) and 2 cache slices (bottom row)
Disabled blocks are clock and power gated
Power and Leakage Breakdown

Power Breakdown

- **Vcore**: 54.6%
- **Vuncore**: 33.4%
- **Vio**: 11.2%
- **Vpll**: 0.8%

Leakage Breakdown

- **Active**: 84%
- **Leakage**: 16%

Reduction techniques

- **Clock gating**
 - Run uncore at 0.9V

Long channel device usage: 58% cores, 85% uncore
• 14 layer organic substrate
 – 49.1 x 56.4 mm
 – 5-4-5 layer stacking
• Integrated heat spreader
 – 35.5 x 43.1 mm
• System management components
 – ROM’s for processor information

• 1567 total lands at 1.016 mm pitch
 – 717 signal IO’s
• 32 x 24 mm cavity
 – Decoupling capacitors on package bottom directly opposite circuits
• 100% lead-free\(^1\) and halogen-free\(^2\)

\(^1\) 45nm product is manufactured on a lead-free process. Lead is below 1000 PPM per EU RoHS directive (2002/95/EC, Annex A). Some EU RoHS exemptions for lead may apply to other components used in the product package.
\(^2\) Applies only to halogenated flame retardants and PVC in components. Halogens are below 900 PPM bromine and 900 PPM chlorine.
Thermal Sensors

- 9 temperature sensors
 - One in each core hot spot
 - One in the die center
 - Temperature information is available through the PECI bus for system fan management

- Large die with cores spread apart is relatively easy to cool
RX Block Diagram
I/O Reference Current Compensation

to the receiving current mirrors

Current multiplier

H

Iref

Iref0

Irefn

Iref1

Local IDAC

Local IDAC

Global IDAC

Digital Counter

Digital Counter

Digital Counter

Rext

vref
QPI Eye Diagram

Eye diagram captured on 14”, 1-connector QPI link at 6.4GT/s
Disable Unused QPI ports

Dual processor with one IOH

Partially populated 4 socket board

Legend:
- **Unpopulated Socket**
- **Unused QPI links**
• Link detector senses unused links at power-on and disables them to save ~2W per port
 – Shut-off all driver bias currents
 – Turn-off the PLL to stop the clock
Load Adaptive Voltage Regulation

Full Load Mode
• All VR phases are enabled
• Maximum VR efficiency

Idle Mode
• Turn off 3 core and 1 cache phases
• Maximum VR efficiency

Nehalem-EX extends the VR phase shut-off to the cache supply
About 2W power reduction per socket in idle mode
Load Efficiency of 4-phase Voltage Regulator

Shut-off VR phases in idle mode to improve efficiency
Summary

• Enterprise-class 45nm 8-cores, 16-threads Xeon® Processor with 24MB on-die shared L3 cache
 – Largest transistor count for a microprocessor
 – Two integrated memory controllers
 – Four point-to-point links at 6.4GT/s with per-lane compensation

• Active power and leakage reduction techniques
 – 45nm High-K Metal Gate process reduces leakage
 – Multiple voltage and clock domains minimize power consumption
 – Operate at the lowest possible voltage
 – Extensive use of long channel devices
 – Automatically disable unused QPI ports at power-on
 – Load adaptive voltage regulation reduces idle power

• Core and cache recovery enables multiple product options
 – Disabled cores and cache slices are clock and power gated